Welcome to your CDP Climate Change Questionnaire 2022

C0. Introduction

C0.1

(C0.1) Give a general description and introduction to your organization.

BACKGROUND

Unilever makes and sells more than 400+ brands in over 190 countries which are used by some 3.4 billion consumers worldwide every day. Our brands include Knorr, Dove, Rexona, Lipton, Hellmann’s, Omo, Lifebuoy and Ben & Jerry’s – amongst many others.

In 2021, our business was organised across three divisions: Beauty & Personal Care, Foods & Refreshment and Home Care. Total turnover in 2021 was €52.4bn.

OUR PURPOSE

Unilever’s purpose is to make sustainable living commonplace which we believe is the best way to deliver long-term sustainable growth. We put sustainable living at the heart of everything we do, including our brands and products, our standards of behaviour and our partnerships which drive transformational change across our value chain.

In June 2020, we released new commitments to fight climate change and protect nature as part of our new integrated business strategy, the Unilever Compass which builds on the Unilever Sustainable Living Plan, which came to an end in 2020. Some of our Unilever Compass commitments include:

- Net zero emissions for all our products by 2039.
- A deforestation-free supply chain by 2023.
- A new Regenerative Agriculture Code for all our suppliers.
- Water stewardship programmes to 100 locations in water-stressed areas by 2030.
- Investing €1 billion in a new Climate & Nature Fund, which will be used by Unilever’s brands over the next ten years to take meaningful and decisive action.

OUR REPORTING AND DISCLOSURE

Unilever’s primary report is our Annual Report & Accounts (ARA). In our ARA, we report progress against our Unilever Compass commitments as well as a range of other non-financial indicators. Our ARA also includes TCFD disclosures. We provide additional climate related disclosure and commentary in the Planet & Society Hub on unilever.com.
ASSURANCE

PricewaterhouseCoopers LLP (PwC) scope for their assurance work on selected Compass & Environmental & Occupational Safety performance indicators can be found in the PwC Basis of Preparation 2021 document in the Independent Assurance and metrics section on our website, alongside their findings in the PwC Limited Assurance Statement for 2021.

DISCLAIMER

This CDP submission may contain forward-looking statements, including ‘forward-looking statements’ within the meaning of the United States Private Securities Litigation Reform Act of 1995. Words such as ‘will’, ‘aim’, ‘expects’, ‘anticipates’, ‘intends’, ‘looks’, ‘believes’, ‘vision’, or the negative of these terms and other similar expressions of future performance or results, and their negatives, are intended to identify such forward-looking statements. These forward-looking statements are based upon current expectations and assumptions regarding anticipated developments and other factors affecting the Unilever Group (the ‘Group’). They are not historical facts, nor are they guarantees of future performance. Because these forward-looking statements involve risks and uncertainties, there are important factors that could cause actual results to differ materially from those expressed or implied by these forward-looking statements. These forward-looking statements speak only as of the date of this document.

C0.2

(C0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
<th>Indicate if you are providing emissions data for past reporting years</th>
<th>Select the number of past reporting years you will be providing emissions data for</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 1, 2020</td>
<td>September 30, 2021</td>
<td>Yes</td>
<td>1 year</td>
<td></td>
</tr>
</tbody>
</table>

C0.3

(C0.3) Select the countries/areas in which you operate.

- Algeria
- Argentina
- Australia
- Austria
- Bangladesh
- Belgium
- Bolivia (Plurinational State of)
- Brazil
- Bulgaria
- Canada
Chile
China
Colombia
Costa Rica
Côte d'Ivoire
Cyprus
Czechia
Denmark
Dominican Republic
Ecuador
Egypt
El Salvador
Ethiopia
Finland
France
Germany
Ghana
Greece
Guatemala
Honduras
Hong Kong SAR, China
Hungary
India
Indonesia
Iran (Islamic Republic of)
Ireland
Israel
Italy
Japan
Kenya
Lithuania
Malaysia
Mexico
Morocco
Myanmar
Nepal
Netherlands
Nicaragua
Nigeria
Pakistan
Panama
Paraguay
Peru
Philippines
Poland
Portugal
Romania
C0.4

(C0.4) Select the currency used for all financial information disclosed throughout your response.

EUR

C0.5

(C0.5) Select the option that describes the reporting boundary for which climate-related impacts on your business are being reported. Note that this option should align with your chosen approach for consolidating your GHG inventory.

Operational control

C-AC0.6/C-FB0.6/C-PF0.6

(C-AC0.6/C-FB0.6/C-PF0.6) Are emissions from agricultural/forestry, processing/manufacturing, distribution activities or emissions from the consumption of your products – whether in your direct operations or in other parts of your value chain – relevant to your current CDP climate change disclosure?

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture/Forestry</td>
<td>Both own land and elsewhere in the value chain [Agriculture/Forestry only]</td>
</tr>
</tbody>
</table>
C-AC0.7/C-FB0.7/C-PF0.7

(C-AC0.7/C-FB0.7/C-PF0.7) Which agricultural commodity(ies) that your organization produces and/or sources are the most significant to your business by revenue? Select up to five.

<table>
<thead>
<tr>
<th>Agricultural commodity</th>
<th>% of revenue dependent on this agricultural commodity</th>
<th>Produced or sourced</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber</td>
<td>More than 80%</td>
<td>Sourced</td>
<td>The % of revenue dependent on each commodity is an approximation based on annual turnover for our Beauty & Personal Care, Foods & Refreshments and Home Care divisions. This is not based on actual product-specific data and does not take into account the level of inclusion or whether or not it is substitutable/one of a number of sources. Each commodity is assessed based on revenue per division and an approximate calculation (%) of brands within that division that use paper and board. Paper and board is widely used across all divisions in some form i.e. box packaging, so we have selected >80% of revenue.</td>
</tr>
<tr>
<td>Palm Oil</td>
<td>40-60%</td>
<td>Sourced</td>
<td>The % of revenue dependent on each commodity is an approximation based on annual turnover for our Beauty & Personal Care, Foods & Refreshments and Home Care categories. This is not based on actual product specific data and does not take into account level of inclusion or whether or not is substitutable/one of a number of sources.</td>
</tr>
</tbody>
</table>
Each commodity is assessed based on revenue per category and a rough calculation (% of brands within that category that use palm oil.

Palm oil is used in Beauty & Personal Care, Home Care and Food & Refreshments. Based on this estimation, palm oil accounts for about 51-60% of revenue.

Agricultural commodity
- Soy

% of revenue dependent on this agricultural commodity
- Less than 10%

Produced or sourced
- Sourced

Please explain
The % of revenue dependent on each commodity is an approximation based on annual turnover for our Beauty & Personal Care, Foods & Refreshments and Home Care divisions. This is not based on actual product specific data and does not take into account the level of inclusion or whether or not it is substitutable/one of a number of sources.

Each commodity is assessed based on revenue per division and an approximate calculation (%) of brands within that division that use it. Soy is only used in only a small amount of our Foods & Refreshments portfolio, so the revenue is calculated as 6-10% of the total.

Agricultural commodity
- Other, please specify
 - Cocoa

% of revenue dependent on this agricultural commodity
- Less than 10%

Produced or sourced
- Sourced

Please explain
The % of revenue dependent on each commodity is an approximation based on annual turnover for our Beauty & Personal Care, Food & Refreshments and Home Care categories. This is not based on actual product specific data and does not take into account level of inclusion or whether or not is substitutable/one of a number of sources.
Each commodity is assessed based on revenue per division and an approximate calculation (%) of brands within that division that use cocoa. Unilever purchases cocoa mainly for our ice cream business for brands such as Magnum, Wall's and Ben & Jerry's, and we estimate this accounts for between 6 – 10% of revenue.

C0.8

(C0.8) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

<table>
<thead>
<tr>
<th>Indicate whether you are able to provide a unique identifier for your organization</th>
<th>Provide your unique identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, an ISIN code</td>
<td>GB00B10RZP78</td>
</tr>
</tbody>
</table>

C1. Governance

C1.1

(C1.1) Is there board-level oversight of climate-related issues within your organization?

Yes

C1.1a

(C1.1a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for climate-related issues.

<table>
<thead>
<tr>
<th>Position of individual(s)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>The Unilever Board delegates the running of Unilever Group to the CEO, with the exception of some strategic matters (e.g. approval of dividends). Whilst the Board takes accountability, the CEO is ultimately responsible for the oversight of our climate agenda, including the management of all risks and opportunities, including our commitments on climate action and achieving net zero emissions by 2039. The CEO can delegate responsibilities to the Unilever Leadership Executive (ULE). The ULE is comprised of the CEO, CFO and other senior executives. All ULE members report to the CEO but are not part of the Board’s decision-making process, which is reserved for the CEO and CFO as the only two executive Board members. In 2020, our CEO approved Unilever’s new set of sustainability commitments under the Unilever Compass, which succeeded the Unilever Sustainable Living Plan. These included commitments to achieve net zero emissions from all our products from sourcing to point of sale by 2039, halving the GHG impact of our...</td>
</tr>
</tbody>
</table>
products across the lifecycle by 2030 and achieving net zero emissions in our operations by 2030. The CEO also approved our Climate Transition Action Plan (CTAP), which outlines what specific actions we will take to achieve our climate commitments.

In December 2020 Unilever’s Board agreed that it would put our Climate Transition Action Plan (CTAP) before shareholders and seek a non-binding, advisory vote on our ambitious emissions reduction targets. Our CTAP sets out a range of targets and actions designed to deliver an emissions reduction pathway consistent with the 1.5 degrees ambition of the Paris Agreement. In May 2021, we put the CTAP to our shareholders at our AGM and 99.59% of our shareholders voted in favour of the plan, giving the Board and our business a strong mandate to progress our ambitious climate agenda.

C1.1b

(C1.1b) Provide further details on the board’s oversight of climate-related issues.

<table>
<thead>
<tr>
<th>Frequency with which climate-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which climate-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled – some meetings</td>
<td>Reviewing and guiding strategy</td>
<td>Unilever’s Board has ultimate responsibility for reviewing, monitoring and guiding the strategy for the Unilever Group, as well as its conduct. The Board has overall accountability for the management and guidance of risks and opportunities, including those associated with climate action and our net zero commitments.</td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding major plans of action</td>
<td>In 2021, the Board held 6 planned meetings and 3 additional meetings. The Board is supported by the Unilever Leadership Executive (ULE). The ULE meet quarterly to discuss key strategic matters. During 2021, three agenda items relating to climate change were discussed, including progress against our Compass climate goals.</td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding risk management policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding business plans</td>
<td>The Board’s delegated Corporate Responsibility Committee (CRC) oversees Unilever’s conduct as a responsible global business. Core to this remit is its governance of progress on Unilever’s sustainability agenda, as set out in the company’s integrated</td>
</tr>
<tr>
<td></td>
<td>Setting performance objectives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monitoring implementation and performance of objectives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overseeing major capital expenditures, acquisitions and divestitures</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring and overseeing progress against goals and targets for addressing climate-related issues.

<table>
<thead>
<tr>
<th>Monitoring and overseeing progress against goals and targets for addressing climate-related issues</th>
</tr>
</thead>
</table>

Business strategy, the Unilever Compass, and reviewing sustainability-related risks, developments and opportunities. The CRC feeds into the Board for key decisions on major plans of action to be made, review our climate reporting and receive presentations from sustainability experts, including the Sustainability Advisory Council. Within the Unilever Compass, there are climate action targets, including those for our climate action and net zero commitments in our own operations and across our value chain, which the CRC oversees. The CRC report their findings to the Board regularly so that they can fulfil their oversight responsibilities.

The CRC’s responsibilities are complemented by those of the Audit Committee. During 2021 the Audit Committee continued to review the sustainability assurance provided by PwC (including Environmental & Occupational Safety which includes metrics such as GHG emissions) and plan for the assurance on non-financial Compass metrics going forward.

Additional specialist governance groups are in place to support our climate agenda and ULE decision-making, including:

- Climate Action Committee: Drives delivery of our carbon ambition at corporate and country level and leads strategic partnerships and policy on renewables. Chair by our Chief Business Operations Officer.
- Sustainable Sourcing Steering Group: Supports our strategy focusing on long-term, sustainable access to our key crops. Chair by our Chief Procurement Officer.

For the fifth year, we applied the recommendations of the TCFD. In Unilever’s 2021 ARA, climate was included as one of our principal business risks. As part of the Board sign-off process, the Board and the Audit Committee are required to approve the ARA, which includes our TCFD statement. In 2021, this statement again included our analysis of the direct risks from climate change to key commodities such as palm oil, including changes in yield and supply. These risks are reviewed by the Board on an annual basis.
C1.1d

(C1.1d) Does your organization have at least one board member with competence on climate-related issues?

<table>
<thead>
<tr>
<th>Board member(s) have competence on climate-related issues</th>
<th>Criteria used to assess competence of board member(s) on climate-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Involvement of Board Member in climate-related organisations. Unilever’s CFO is Vice Chair of the Financial Stability Board Task Force on Climate-related Financial Disclosures (TCFD).</td>
</tr>
</tbody>
</table>

C1.2

(C1.2) Provide the highest management-level position(s) or committee(s) with responsibility for climate-related issues.

<table>
<thead>
<tr>
<th>Name of the position(s) and/or committee(s)</th>
<th>Responsibility</th>
<th>Frequency of reporting to the board on climate-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Financial Officer (CFO)</td>
<td>Both assessing and managing climate-related risks and opportunities</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Both assessing and managing climate-related risks and opportunities</td>
<td>Quarterly</td>
</tr>
</tbody>
</table>

C1.2a

(C1.2a) Describe where in the organizational structure this/these position(s) and/or committees lie, what their associated responsibilities are, and how climate-related issues are monitored (do not include the names of individuals).

Our Chief Executive Officer (CEO) and Chief Financial Officer (CFO) are the two Executive Directors on our Board and are both members of the Unilever Leadership Executive (ULE). The ULE is Unilever’s highest operational leadership group, comprised of senior and C-Suite executives. The CEO is then responsible for reporting to the Board.

The Board have delegated to the CEO and CFO the responsibility for the day-to-day operational leadership of the business including strategy, monitoring of performance and policy. This responsibility is shared equally between the CEO and CFO. This includes accountability for assessing and managing climate-related risks and opportunities, including our climate-related 'principal risk'. It also includes responsibility for the 6 climate specific targets under the Unilever Compass 'improve the health of the planet' overarching goal. The ULE then help the Board fulfil their oversight responsibilities.
As well as being a member of the ULE and the Boards, our CFO also attends our Board-delegated Audit Committee meetings, which discuss Unilever’s risk management strategy and processes. Our principal risks are those we regard as the most relevant to our business and more material to business performance, from both a financial and a strategic perspective. One of Unilever’s principal risks is climate change. In reviewing the principal risks, the CFO along with the Audit Committee consider the level of risk that Unilever is prepared to take in pursuit of the business strategy and the effectiveness of the management controls and monitoring in place to mitigate the risk exposure. They also consider the effectiveness of any remedial actions taken and report their findings in the Risk section of the Annual Report and Accounts (ARA) annually. As a reflection of the significance that we place on climate change, for the fifth year in a row, we have included TCFD-aligned disclosure in our ARA.

The full ULE, chaired by the CEO, meet on a quarterly basis to review our sustainability progress against the new Unilever Compass goals, including those targets related to climate. This represents a significant step towards integrating climate considerations into our core business operations. The ULE is CEO led, with each member reporting directly to the CEO. In addition the ULE, including the CEO and CFO, meet monthly to discuss key strategic matters and during 2021, several agenda items related to climate change were discussed, including progress against our new Unilever Compass climate goals. The ULE’s responsibilities also include overseeing climate-focussed R&D and brand-led innovations (for example, detergents that perform well in cold water) to help reduce indirect consumer use phase emissions. Additional specialist governance groups are in place to support our climate agenda and ULE decision making. This includes the Climate Action Committee, which drives the delivery of our carbon ambition at corporate and country level and leads strategic partnerships and policy on renewables. The Climate Action Committee is chaired by our Chief Business Operations Officer, who is part of the ULE.

C1.3

(C1.3) Do you provide incentives for the management of climate-related issues, including the attainment of targets?

<table>
<thead>
<tr>
<th>Provide incentives for the management of climate-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Yes</td>
<td>No comment necessary. Details included in C1.3a</td>
</tr>
</tbody>
</table>

C1.3a

(C1.3a) Provide further details on the incentives provided for the management of climate-related issues (do not include the names of individuals).

<table>
<thead>
<tr>
<th>Entitled to incentive</th>
<th>Type of incentive</th>
<th>Activity incentivized</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive</td>
<td>Monetary reward</td>
<td>Emissions reduction target</td>
<td>One element of our Remuneration Policy is the long-term Performance Share Plan (PSP). The PSP is linked to financial and sustainability performance, guided by our</td>
</tr>
</tbody>
</table>
| Officer (CEO) | Sustainability Progress Index (SPI), which accounts for 25% of the total PSP award for the CEO, other C-Suite officers and senior executive leadership. The PSP replaced the Management Co-Investment Plan (MCIP) in 2021.
Performance is determined through the SPI, a qualitative and quantitative assessment made jointly by the Board-delegated Corporate Responsibility and Compensation Committees. The Committees determine a rating from 0% to 200% each year based on 7 key performance indicators (now 8 indicators in 2022).
SPI in 2021 was based on a selection of key performance indicators (KPIs) from our Unilever Sustainable Living Plan (USLP) which ran until 2020, reflected in the PSP up to and including the 2021 award. This includes performance against our environmental impact target to reduce CO2 emissions from our factories per tonne of production. In 2021 Unilever overachieved against this target, reducing our CO2 emissions from energy from our factories per tonne of production by 75% against the 2008 baseline.
MCIP performance is assessed annually and then tallied as an average index for each four-year MCIP performance period, enabling the Compensation Committee to determine the level of matched shares. The level of monetary reward is dependent on the average score between 0 to 200% over the four years.
Over 2018-2021 the average SPI outcome was 125%, contributing to an MCIP outcome of 87% (which has now vested). In 2020, the annual SPI outcome was 125%, of which a proportion was based on Unilever’s performance on emissions reduction. Details of the MCIP awards for our CEO & CFO are published on p 89 - 90 our Annual Report 202.
The CEO leads the Unilever Leadership Executive who all play a significant role in driving progress towards our Compass targets, including our climate ambitions. Executive remuneration for management employees – up to and including the ULE – continues to be linked to performance against climate change goals. Their reward packages include fixed pay, a bonus as a percentage of fixed pay and eligibility to participate in a long-term |
C2. Risks and opportunities

C2.1

(C2.1) Does your organization have a process for identifying, assessing, and responding to climate-related risks and opportunities?

Yes

C2.1a

(C2.1a) How does your organization define short-, medium- and long-term time horizons?

<table>
<thead>
<tr>
<th></th>
<th>From (years)</th>
<th>To (years)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term</td>
<td>0</td>
<td>3</td>
<td>Our annual report outlines the time horizon for our risks in line with the entries in the table here. In order to report on the long-term viability of our company, the Directors annually review the overall funding capacity and headroom available to withstand severe events and carry out a robust assessment of the principal risks, including those that would threaten its business model, future performance, solvency or liquidity. This assessment also includes reviewing and understanding the mitigation factors in respect of each principal risk. The horizons are aligned with other business practice time horizons – including those which underpin our principal risk reporting. We also use a three-year viability period based on our forward-looking planning which is set out in our three-year strategic plans and annual forecasts.</td>
</tr>
<tr>
<td>Medium-term</td>
<td>3</td>
<td>10</td>
<td>Our annual report outlines the time horizon for our risks in line with the entries in the table here. In order to report on the long-term viability of our company, the Directors annually review the overall funding capacity and headroom available to withstand severe events and carry out a robust assessment of the principal risks, including those that would threaten its business model, future performance, solvency or liquidity. This assessment also includes reviewing and understanding the mitigation factors in respect of each principal risk. The horizons are aligned with other business practice time horizons – including those which underpin our principal risk reporting. We also use a three-year viability period based on our forward-looking planning which is set out in our three-year strategic plans and annual forecasts.</td>
</tr>
<tr>
<td>Long-term</td>
<td>10</td>
<td>100</td>
<td>Our annual report outlines the time horizon for our risks in line with the entries in the table here. In order to report on the long-term viability of our company, the Directors annually review the overall funding capacity and headroom available to withstand severe events and carry out a robust assessment of the principal risks, including those that would threaten its business model, future performance, solvency or liquidity. This assessment also includes reviewing and understanding the mitigation factors in respect of each principal risk. The horizons are aligned with other business practice time horizons – including those which underpin our principal risk reporting. We also use a three-year viability period based on our forward-looking planning which is set out in our three-year strategic plans and annual forecasts.</td>
</tr>
</tbody>
</table>
capacity and headroom available to withstand severe events and carry out a robust assessment of the principal risks, including those that would threaten its business model, future performance, solvency or liquidity. This assessment also includes reviewing and understanding the mitigation factors in respect of each principal risk. The horizons are aligned with other business practice time horizons – including those which underpin our principal risk reporting. We also use a three-year viability period based on our forward-looking planning which is set out in our three-year strategic plans and annual forecasts.

C2.1b

(C2.1b) How does your organization define substantive financial or strategic impact on your business?

Definition: Substantive impacts for Unilever are those that would threaten the Group’s business model, future performance, solvency or liquidity. We call these our Principal Risks & these apply to the Unilever Group (including our direct operations & supply chain). One of Unilever’s Principal Risks is climate change.

Determination: We use our Principal Risks (all 14 included in pages 46-50 of our Annual Report and Accounts 2021) to identify scenarios which could force Unilever to cease being viable over a three-year period. Each year, we assess the cash flow impact a particular risk/mix of risks could have to the business based on the amount of cash held, our operating cash flows and the credit facilities available & their ability to affect the business operating and meeting its liabilities. Our time horizons are aligned with our forward-looking planning, set out in our three-year strategic plans and annual forecasts and our Board assume overall accountability for the management of risk & reviewing the effectiveness of Unilever’s risk management & internal control systems.

Threshold: In assessing viability, ‘severe but plausible’ scenarios based on our principal risks are considered and the definition we work with is 1% of our Group Turnover which was equal to €524m in 2021.

We identify substantive financial impact in 2 ways:

1. assessing scenarios for each individual principal risk, for example the termination of our relationships with the three largest global customers; the loss of all material litigation cases; a major IT data breach or reputational damage from not progressing against our plastic packaging commitments, and the lost cost and growth opportunities from not keeping up with technological changes

2. assessing scenarios that involve more than one principal risk, for example a major global incident affecting one or more of Unilever’s key locations resulting in an outage for a year in a key sourcing unit & significant water shortages in our key developing markets. All the principal risks could impact our business within the next two years (i.e. short-term risks less than 3 years), or could impact our business over the next 3-10 years (i.e. medium-term risks less than 10 years).
C2.2

(C2.2) Describe your process(es) for identifying, assessing and responding to climate-related risks and opportunities.

Value chain stage(s) covered
- Direct operations
- Upstream
- Downstream

Risk management process
Integrated into multi-disciplinary company-wide risk management process

Frequency of assessment
More than once a year

Time horizon(s) covered
- Short-term
- Medium-term
- Long-term

Description of process
Climate risks are reviewed and assessed on an ongoing basis and formally at least once per year. We monitor risks throughout the year to identify changes in the risk profile. We regularly carry out climate-related risk assessments at site level, supplier level, as well as innovation-project level.

Process to assess the financial impact of risks: We take an embedded approach to risk management which puts risk and opportunity assessment at the core of the Board agenda. Unilever’s appetite for risk is driven by the following:

• Our growth should be consistent, competitive, profitable and responsible.
• Our actions on issues such as plastic and climate change must reflect their urgency, and not be constrained by the uncertainty of potential impacts.
• Our behaviours must be in line with our Code of Business Principles and Code Policies.
• Our ambition to continuously improve our operational efficiency and effectiveness.
• Our aim to maintain a minimum A/A2 credit rating on a long-term basis

The Board has overall accountability for the management of risk and for reviewing the effectiveness of Unilever’s risk management and internal control systems. The Board has established a clear organisational structure with well-defined accountabilities for the principal risks that Unilever faces in the short, medium and long term. This organisational structure and distribution of accountabilities and responsibilities ensure that every country in which we operate has specific resources and processes for risk reviews and risk mitigation. This is supported by the Unilever Leadership Executive.
(ULE), which takes active responsibility for focusing on the principal areas of risk to Unilever. The Board regularly review these risk areas, including consideration of environmental, social and governance matters, and retain responsibility for determining the nature and extent of the significant risks that Unilever is prepared to take to achieve its strategic objectives.

We use our 14 Principal Risks (p46-50 of our Annual Report & Accounts 2021) to identify scenarios which could force Unilever to cease being viable over a 3-year period. We see these as our substantive financial or strategic risks and climate change risk is one of them. Each year, we run an integrated, company-wide viability assessment and provide the estimated cash impact to the business. Findings are reported to the Audit Committee and a summary is provided in our Annual Report & Accounts.

The assessment has 3 parts:
1) Directors consider the period over which they have a reasonable expectation Unilever will continue to operate and meet its liabilities;
2) They consider the available debt facilities and headroom over the viability period, assuming any debt maturing can be refinanced at commercially-acceptable terms;
3) They consider the potential impact of severe but plausible scenarios over this period, including individual principal risk scenarios and those that involve more than one principle risk (multi-risk scenarios).

As well as identifying the most relevant risks for our business throughout the year, we reflect on whether we think the level of risk associated with each of our principal risks is increasing or decreasing and whether certain mitigating actions help us to manage these risks. For each of our Principal Risks, we have a risk management framework which details the controls in place and management responsibilities for both the overall risk, and the individual controls mitigating it. Time horizons vary for different aspects of our business from the short-term (e.g. product innovation), medium-term (e.g. business planning) and long-term (e.g. company-level sustainability targets). Each year, as well as assessing the cash impact of each Principal Risk individually, we also use a multi-risk approach to look at the worst-case scenario we may face.

Transition risk: As part of our 1.5°C, 2°C and 4°C scenario analysis, we look at the impact from transition risks and opportunities, such as changing consumer preferences and future policy and regulation. Possible future mandatory carbon pricing in key countries could result in increases in both manufacturing costs and the costs of raw materials such as ingredients and packaging. If the circumstances in these risks occur or are not successfully mitigated, our cash flow, operating results, financial position, business and reputation could be materially adversely affected. To mitigate the risk from future policy and regulatory changes, we support the use of carbon pricing as an important tool to help us achieve our zero emissions goal.

Case study: Over the past five years, we have piloted different carbon pricing schemes for our direct operations including a programme that ‘taxed’ divisional capital expenditure budgets (initially formed from the carbon emissions of the divisions) to create a centrally managed Low Carbon Fund. The Fund was used to accelerate clean
technology investment through energy and emissions reduction projects globally.

Physical risk: Climate change and governmental actions to reduce such changes may disrupt our operations and/or reduce consumer demand for our products. Each year, as well as assessing the cash impact of each Principal Risk individually, we also use a multi-risk approach to look at the worst-case scenario we may face. In our 2021 viability assessment, we looked at a number of multi-risk scenarios including for example a major global incident affecting one or more of Unilever’s key locations resulting in an outage for a year in a key sourcing unit and significant water shortages in our key developing markets (for instance due to severe weather). The level of severity reviewed was based on the complete loss of all our turnover in our largest geographic market along with destruction of a key sourcing unit (upstream) and reduced demand for our products that require water (downstream). Our Directors concluded that they had a reasonable expectation the Group (Unilever) would be able to continue in operation and meet its liabilities due over the three-year period of the assessment.

Case study: To mitigate the physical risks from climate change, including extreme weather we monitor changing weather patterns on a short-term basis and take action to mitigate any negative effects. We have contingency plans to secure alternative key material supplies at short notice, to transfer or share production between manufacturing sites and to substitute materials in products and recipes if needed. We manage commodity price risks through forward-buying of traded commodities and other hedging mechanisms. We integrate weather system modelling into our forecasting process. Our Regenerative Agriculture Principles (launched in 2021) and Sustainable Agriculture Code promote the principles of Climate-Smart Agriculture to our suppliers and encourage practices to sustainably increase their productivity and resilience to extreme weather.

C2.2a

(C2.2a) Which risk types are considered in your organization's climate-related risk assessments?

<table>
<thead>
<tr>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current regulation</td>
<td></td>
</tr>
<tr>
<td>Relevant, always</td>
<td>Relevance of risk:</td>
</tr>
<tr>
<td>included</td>
<td>Our processes for managing legal and regulatory risks are very similar.</td>
</tr>
<tr>
<td></td>
<td>We report them as a combined risk ('Legal & Regulatory') in our Annual Report. To be consistent, we are doing the same with our CDP reporting. Climate change laws and regulations around the world – including but not limited to carbon taxes and emission trading schemes (ETS), zero deforestation laws and greenhouse gas emissions reporting - are continuously changing and therefore require regular monitoring and assessment for requirements. Failure to comply with laws and regulations could expose Unilever to civil and/or criminal</td>
</tr>
</tbody>
</table>
actions leading to damages, fines and criminal sanctions against us and/or our employees with possible consequences for our corporate reputation. To monitor the risks associated with current climate-related laws and regulations, we are continually reviewing existing regulation.

Example:

Decarbonisation activities to date have kept Unilever ahead of the curve on carbon pricing regulation. However, potentially bigger risk exists in our supply chain. Unilever sources materials and services from around 53,000 suppliers in over 150 countries. Carbon pricing poses a risk of increased costs to Unilever and our suppliers with significant carbon footprints where carbon taxes or ETS schemes are under consideration or currently being implemented, such as in China, South Africa and the UK. This may lead to increased supply chain costs as suppliers pass the cost of carbon on to Unilever. In addition, failure to pay carbon taxes could lead to fines. For instance, Unilever is likely to incur an indirect cost through its scope 2 emissions where carbon pricing affects energy generators. Switching to green tariffs may not shield Unilever from electricity price rises that result from carbon pricing regulation on power generation. There is a risk these costs cannot be passed on to the consumer. There is currently no certainty on where the tax burden will fall and whether the costs will be passed downstream to manufacturers and consumers. Furthermore, supplier capability to manage the risk from carbon pricing and taxes (e.g. through emissions reduction) is in many cases nascent. Details of mitigating actions are reported in our Annual Report & Accounts.

<table>
<thead>
<tr>
<th>Emerging regulation</th>
<th>Relevant, always included</th>
<th>Relevance of risk:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change regulations around the world – including but not limited to carbon taxes and emission trading schemes (ETS), zero deforestation laws and greenhouse gas emissions reporting - are continuously being introduced and therefore require regular monitoring and assessment for emerging requirements. To monitor the risks associated with emerging climate-related laws and regulations, we are continually reviewing emerging regulation as part of Unilever’s ‘Legal & Regulatory’ Principal Risk. Our legal & regulatory specialists are heavily involved in monitoring and reviewing our practices to provide reasonable assurance that we remain aware of, and in line with, all relevant laws and legal obligations. As regulatory pressures around climate change have increased, we are seeing impacts to our operations and supply chain.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:
We monitor governmental developments around actions to combat climate change and we consider the impact of possible future mandatory carbon pricing in key countries e.g. our largest markets in terms of carbon emissions such as China which accounts for 3% of the top 30 Unilever countries in terms of carbon footprint. Prior to the planned introduction of the UK ETS (in place of the EU ETS), Unilever was expecting to be affected by changes made to the EU ETS as it entered its fourth phase in 2021 - namely, by the phasing out of free allocation between 2021 and 2030. Without further decarbonisation, in any carbon price scenario Unilever was expecting to incur costs as the free allocations were gradually phased out to 0% by 2030.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Relevant, always included</th>
</tr>
</thead>
</table>

Relevance of risk:

Technology is key in creating innovative, sustainable products that continue to meet the needs of our consumers and getting these new products to market with speed. If we are unable to invest in technology to reduce carbon emissions across our value chain, our production and distribution costs may increase and we may cease to be competitive, impacting sales and future growth. We need to invest in technology related to (1) the energy efficiency of our operations and across our value chain, (2) product innovation and the use of low carbon materials in our products, and (3) product innovation through low-carbon and resource-efficient products. Because of this technology risks are included under our ‘Brand Preference’ Principal Risk to Unilever.

Example:

If we are unable to innovate effectively or utilise technological advancements to make our products more sustainable, we may cease to be competitive, impacting sales and future growth. We are working to address this risk in our household cleaning and laundry portfolio through ‘Clean Future’, which is removing black carbon ingredients from our products in place of recycled or renewable carbon through:

- Using bio-science and industrial biotechnology to produce highly efficient cleaning ingredients from sustainably sourced biomass, such as the rhamnolipids (a surfactant) we are using in our hand dishwash detergent in Chile and Vietnam or new high-performing bio-enzymes.

- Turning non-recyclable plastic waste destined for landfill or incineration into biodegradable cleaning and fragrance chemicals.

- Turning CO2 from industrial emissions into useful chemicals and minerals through carbon capture and utilisation, as we already do for
some of the soda ash we use in our laundry detergents in India.

Adopting this approach in the recent past has helped us deliver up to GHG savings in product formulations whilst delivering new consumer benefits such as skin mildness. We are now exploring the extent to which this level of GHG reduction could be deliverable across the Home Care portfolio. We’re investing €1 billion over ten years in researching and developing new technologies to reduce the carbon footprint, plastic waste and water use, and increase the biodegradable and sustainable ingredients associated with our products.

<table>
<thead>
<tr>
<th>Legal Relevant, always included</th>
<th>Relevance of risk:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Our processes for managing legal and regulatory risks are very similar. We report them as a combined risk (‘Legal & Regulatory’) in our Annual Report. To be consistent we are doing the same with our CDP reporting. Climate change laws and regulations around the world – including but not limited to carbon taxes and emission trading schemes (ETS), zero deforestation laws and greenhouse gas emissions reporting - are continuously changing and therefore require regular monitoring and assessment for requirements. Failure to comply with laws and regulations could expose Unilever to civil and/or criminal actions leading to damages, fines and criminal sanctions against us and/or our employees with possible consequences for our corporate reputation. To monitor the risks associated with current climate-related laws and regulations, we are continually reviewing existing regulation.</td>
</tr>
</tbody>
</table>

Example:

Concerns about deforestation could lead to changing regulations on land use that could limit growth and impact prices. For example, in Malaysia and Indonesia where we source much of our palm oil, the total land available for palm oil plantations is being capped by government regulation or new plantation licenses have been halted. Failure to comply could lead to litigation or fines. We support policies that tackle deforestation associated with palm oil, and in 2020 we committed to ending deforestation in our supply chain by 2023. So far, we’ve made progress in moving our sourcing footprint to areas of lower risk of deforestation. We’re working towards reporting of low-risk deforestation volumes from 2022 and independently verified deforestation-free volumes from 2023

We have been at the forefront of driving industry-wide change to ensure a sustainable future for palm oil, including as a founding
member of the Roundtable on Sustainable Palm Oil (RSPO).

<table>
<thead>
<tr>
<th>Market</th>
<th>Relevant, always included</th>
<th>Relevance of risk:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Consumer tastes, preferences and behaviours are changing more rapidly than ever before. Unilever’s growth and profitability are determined by our portfolio of categories, geographies and channels and how these evolve over time to meet consumer needs. Unilever depends on its ability to continue being relevant in its markets such as in areas of water scarcity (e.g. South Africa and Brazil) where there could be reduced demand for our products; or in markets where there is an increased demand for plant-based products. Market risk from climate change is included under our ‘Brand Preference’ and ‘Portfolio Management’ Principal Risks to Unilever.</td>
</tr>
</tbody>
</table>

Example:

If Unilever does not make optimal strategic investment decisions taking climate change risks and opportunities into account, then opportunities for growth and improved profitability could be missed. Unilever depends on the ability to continue being relevant, such as in markets where there is an increased demand for plant-based products. In November 2020, the Foods & Refreshment division announced the bold ‘Future Foods’ ambition with several mid-term commitments, including the goal to increase annual sales of plant-based meat and dairy alternatives to €1 billion by 2025–2027. The scope includes three groups of products that are specifically designed to look, taste or cook like products containing animal-derived proteins:
- Meat replacement: Vegan or vegetarian products that contain non-animal-derived alternative proteins instead of meat proteins.
- Vegan mayonnaise: Vegan mayonnaise products in which all animal-derived ingredients are replaced by non-animal-derived alternatives.
- Vegan ice cream: Vegan ice cream products in which all animal-derived ingredients are replaced by non-animal-derived alternatives.

<p>| Reputation | Relevant, always included | i) Relevance of risk: Acting in an ethical manner, consistent with the expectations of customers, consumers and other stakeholders, is essential for the protection of the reputation of Unilever and its brands. Unilever’s brands and reputation are valuable assets and the way in which we operate, contribute to society and engage with the world around us is always under scrutiny both internally and externally. It is important for Unilever to be recognised as a company taking positive action in the context of climate change as this potentially impacts our share price (through investor confidence) and sales (through consumer preference). Reputation is included under our ‘Ethical’ Principal Risk to Unilever. |</p>
<table>
<thead>
<tr>
<th>Acute physical</th>
<th>Relevant, always included</th>
</tr>
</thead>
</table>

Relevance of risk:

Unilever’s business depends on purchasing ingredients and materials (e.g. for our products and packaging such as paper and board), efficient manufacturing and the timely distribution of products to our customers. Extreme weather events could significantly disrupt our entire value chain. Sustained high temperatures could lead to reduced crop outputs due to reduction in soil productivity which could translate into higher raw material prices. Weather events such as hurricanes or floods, which would become increasingly common and intense, could cause plant outages or disrupt our distribution infrastructure. Additionally, macroeconomic negative shocks among affected communities could reduce or destroy consumer demand and purchasing power. The exposure to potentially adverse events such as physical disruptions, environmental or industrial accidents or disruptions at a key supplier, could also impact our ability to deliver orders to our customers. Acute physical risks are included under the ‘Climate Change’ and ‘Supply Chain’ Principal Risks to Unilever.

ii) Example: Failure to deliver Unilever’s climate change targets could harm our corporate reputation as a sustainable business as would failing to set ambitious goals aligned to the Paris Agreement. Our Climate Transition Action Plan (CTAP) sets out a range of targets and actions designed to deliver an emissions reduction pathway consistent with the 1.5°C ambition of the Paris Agreement. We communicated our efforts through a letter to our shareholders from our Chairman and CEO in the foreword of the CTAP. In June 2019, our CEO also urged more alignment between Unilever’s climate ambitions and those in our wider value chain through an open letter to trade associations asking them if their lobbying position on climate policy was consistent with the 1.5°C ambitions set out in the Paris Agreement. Unilever has already committed to ensuring that all direct lobbying relevant to climate policy is consistent with our stated objectives in delivering the 1.5°C ambition of the Paris Agreement.

ii) Example: Failure to manage the impacts of extreme weather could disrupt the supply of vital ingredients for our products. In particular, being a large buyer of palm oil means we are exposed to the acute physical risks associated with it. In 2015, palm oil production was impacted by severe weather linked to a dry El Nino. This brought high temperature across SE Asia, reducing palms yields, lowering output. There were also severe forest fires in Indonesia, particularly in Sumatra & Kalimantan where we source substantial volumes from.
<table>
<thead>
<tr>
<th>Chronic physical</th>
<th>Relevant, always included</th>
<th>Relevance of risk:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Our business depends on purchasing ingredients and materials (e.g. for our products and packaging such as paper and board), efficient manufacturing and distribution of products to customers. Failure to manage chronic physical risks such as water shortages could disrupt our supply chain and operations which are dependent on water; and impact the ability of consumers to use our products which could damage sales and growth. Sourcing sustainably helps secure our supplies and reduces risk and volatility in our raw material supply chains. Sustainable farming methods can also improve the quality of our products, such as our sauces, soups, dressings and ice creams. We always consider the impact of chronic water stress on agricultural productivity and the impact on the price of raw materials. Chronic physical risks are included under the ‘Climate Change’ and ‘Supply Chain’ Principal Risks to Unilever.</td>
</tr>
</tbody>
</table>

Example:

We have conducted several high-level scenario analyses using both the 2°C and 4°C scenarios and in 2021, we extended our analysis to assess the impacts of a 1.5°C rise. The analysis looked at physical environmental risks such as water scarcity and extreme weather. And, whilst policy intervention and regulation would have the most significant impact on our value chain, we would also experience the impact of physical environment risks associated with a warmer climate, even in a 1.5°C world.

C2.3

(C2.3) Have you identified any inherent climate-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes

C2.3a

(C2.3a) Provide details of risks identified with the potential to have a substantive financial or strategic impact on your business.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Risk 1</th>
</tr>
</thead>
</table>

Where in the value chain does the risk driver occur?
Upstream

Risk type & Primary climate-related risk driver
- Emerging regulation
 - Mandates on and regulation of existing products and services

Primary potential financial impact
- Increased direct costs

Company-specific description
- Company-specific description of risk:

 Climate change has been identified as a principal risk to Unilever. As our business operates on the consumer-packaged goods and food and beverage sector, we depend significantly on the ability to purchase raw ingredients and materials to manufacture our products. (e.g. for our Beauty & Personal Care, Home Care and Foods & Refreshments products and packaging such as paper and board).

 Our 2021 scenario analysis assessed the potential financial impacts from climate change on Unilever’s business in 2030, 2039 and 2050 using the 1.5°C scenario. Land use regulation could drive reforms to radically restructure current global land use patterns to conserve and expand forest land, serving as the main natural carbon removal solution. This could reduce land available for food crops, pasture, and timber and hence access to our primary commodities which could drive reduced crop output and increase raw material prices.

Time horizon
- Long-term

Likelihood
- Very likely

Magnitude of impact
- Medium-high

Are you able to provide a potential financial impact figure?
- Yes, an estimated range

Potential financial impact figure (currency)

- **Potential financial impact figure – minimum (currency)**
 - 300,000,000

- **Potential financial impact figure – maximum (currency)**
 - 1,700,000,000

Explanation of financial impact figure
- Approach:
Our 2021 scenario analysis assessed the potential financial impacts from climate change on Unilever’s business in 2030, 2039 and 2050 using the 1.5°C scenario. The data used was from internal environmental, operational, and financial data and external science-based data and assumptions from reputable and broadly used sources such as the IPCC or the International Energy Agency. Risks were reviewed in detail two pathways, ‘proactive’ and ‘reactive’, that we assessed as more likely than other more extreme possible pathways. In the ‘proactive’ route, there’s an early and steady reduction of emissions as a result of a fast response from all economic actors, meaning less dependence on technological advancements to remove carbon from the atmosphere in the second half of the century. In the ‘reactive’ route, significant action by economic actors is delayed to 2030, after which a very rapid transition across all actors is required, accompanied by deployment at a very large scale of low-carbon energy and carbon removal activities and technology.

The modelling assumed no mitigating actions were adopted within that timeframe and; by 2050, land use regulation would increase palm oil prices by ~28% in a proactive route, and ~10% in a reactive route, along with price increases of ~33% (proactive) or ~11% (reactive) for all other commodities and food ingredients.

The lower estimate figure is for the potential financial impacts by 2030 and the upper, is for 2050.

Cost of response to risk

350,000

Description of response and explanation of cost calculation

i) Response to risk: We have contingency plans to secure alternative key material supplies at short notice, for example during extreme weather events, to transfer or share production between manufacturing sites and to use substitute materials in our product formulations and recipes. Commodity price risk is actively managed through forward buying of traded commodities and other hedging mechanisms and trends. Weather patterns are monitored and modelled regularly and integrated into our price forecasting process.

ii) Case study of response to risk: Sourcing sustainably helps secure our supplies and reduces risk and volatility in our raw material supply chains. Our Unilever Sustainable Agriculture Code (SAC) promotes the principles of Climate Smart Agriculture to our suppliers and includes practices that sustainably increase the productivity and resilience to extreme weather. With our suppliers and growers, we’re helping them to manage risks arising from water scarcity. We have jointly implemented over 4,000 water management plans through our sustainable sourcing programme, including the use of drip irrigation and the introduction better soil and nutrient management to reduce soil erosion.

iii) Cost of response calculation/breakdown:

We estimate €350k management costs per annum for mitigating this risk which is
calculated as follows (A + B):
- Cost of performing analysis of risk €250k (A): This work includes senior management and members of supply chain/procurement (provide input on procurement volumes, commodity pricing etc.), Science and Environmental Assurance Centre (SEAC), global finance sustainability and external consultants.
- Management time in responding to and managing the risk - €100k (B): Supply chain and Divisional management are responsible for ensuring that strategy is resilient to material risks identified and taking action to mitigate.

This does not include the cost of mitigation or substitute ingredients. Our Climate Transition Action Plan is our mitigation response. We are currently implementing a detailed plan to decarbonise our business and to achieve net zero emissions by 2039.

Comment
No comment necessary

Identifier
Risk 2

Where in the value chain does the risk driver occur?
Direct operations

Risk type & Primary climate-related risk driver
Emerging regulation
Carbon pricing mechanisms

Primary potential financial impact
Increased direct costs

Company-specific description

i) Company-specific description of risk:

Climate change has been identified as a principal risk to Unilever. Emerging laws and regulations such as carbon pricing in markets where Unilever manufactures products (e.g. China where we have 8 factory sites and the UK where we have 9 factory sites) and sells products (190+ countries) are included in our risk assessments as they may impact the cost of raw materials and the operating costs of our factories, therefore impacting margin and profitability.

Since 2017, we have been conducting an annual scenario analysis to assess the potential financial impacts from climate change on Unilever’s business. Our 2021 scenario analysis assessed the potential financial impacts from climate change on Unilever’s business in 2030, 2039 and 2050 using the 1.5°C scenario. Carbon pricing includes carbon taxes and voluntary removal or offset costs. Tightening regional or national regulations as well as climate commitments across individual businesses could drive widespread implementation of these taxes or market schemes. This could translate into rising direct and indirect costs linked to carbon emissions, where the
strongest impact would likely be on costs of sales linked to raw materials, production, and distribution emissions. Carbon taxes on household emissions or costs passed through to our consumers linked to household emissions may impact their disposable income and ultimately their purchasing power.

Time horizon
Long-term

Likelihood
Virtually certain

Magnitude of impact
High

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)
4,800,000,000

Potential financial impact figure – maximum (currency)
5,200,000,000

Explanation of financial impact figure

i) Approach: We have made a high-level assessment of the impact of 1.5°C temperature increases due to climate change by 2100. Carried out in 2021, the assessment focused on the material impacts on our business in the year 2030, 2039 and 2050. The financial impact range reflects results of the assessment for 2039. We quantified how high prices from carbon regulations and voluntary offset markets for our upstream Scope 3 emissions might impact our raw and packaging materials costs, our distribution costs and the neutralisation of our residual emissions post 2039. The modelling assumed that our business activities are the same as they are today. The scenarios were based on existing internal and external data.

ii) Financial impact figure calculation/breakdown \((A \times B) + (C \times D)\): The main impacts of the 1.5°C scenario are that carbon pricing is introduced in key countries and hence there are increases in both manufacturing costs and the costs of raw materials such as raw and packaging materials costs, our distribution costs by an estimated €2.4-3.2bn impact on profit by 2030 if no action taken. To calculate this, we quantified how high prices from carbon regulations and voluntary offset markets for our upstream Scope 3 emissions might impact our raw and packaging materials costs using the assumptions below. We do not disclose the breakdown of our calculations because the information is commercially sensitive.

iii) Assumptions: While we understand that policy risk and physical impact can happen simultaneously, we made the following simplifying assumptions in the 1.5°C scenario.
We reviewed in detail two pathways, ‘proactive’ and ‘reactive’, that we assessed as more likely than other more extreme possible pathways.

In the ‘proactive’ route, there is an early and steady reduction of emissions as a result of a fast response from all economic actors.

Conversely, in the ‘reactive’ route, significant action by economic actors is delayed to 2030, after which a very rapid transition across all actors is required, accompanied by deployment at a very large scale of low-carbon energy and carbon removal activities and technology.

Ranges reflect upper and lower bound from proactive route and reactive route analysis – for transition or regulation driven risks, the proactive route represents the higher cost. For physical environment risks, the reactive route represents the higher cost.

Cost of response to risk

10,700,000

Description of response and explanation of cost calculation

i) Response to risk: We monitor governmental developments around actions to combat climate change and take proactive action to minimise the impact on our operations. We advocate for changes to public policy frameworks that will enable accelerated decarbonisation, in line with the upper level of ambition of the Paris Agreement on Climate Change. Unilever also supports calls for the introduction of carbon pricing at levels consistent with the delivery of the Paris Agreement. We are committed to ending deforestation in our supply chain by 2023 and we have been at the forefront of driving industry-wide change to ensure a sustainable future for palm oil, including as a founding member of the Roundtable on Sustainable Palm Oil (RSPO).

ii) Case study of response to risk: Over the past five years, we have piloted different carbon pricing schemes across our direct operations including a programme that ‘taxed’ divisional capital expenditure budgets (initially formed from the carbon emissions of the divisions) to create a centrally managed Low Carbon Fund. In 2021, we invested €10.3m in 84 energy and emissions reduction projects globally which we estimate will reduce our annual emissions by over 70,000 tonnes.

iii) Cost of response calculation/breakdown:

We estimate €400k management costs per annum for mitigating this risk which is calculated as follows (A + B):

- Cost of performing analysis of risk, such as scenario analysis - €250k (A): This work includes senior management and members of supply chain/procurement (provide input on procurement volumes, commodity pricing etc.), Science and Environmental Assurance Centre (SEAC), global finance sustainability and external consultants.
- Management time in responding to and managing the risk - €150k (B): Legal, tax, supply chain and finance teams are involved in monitoring the regulations, assessing
the impact on our business and implementing mitigating activities.

The management costs are then added to the 2021 CAPEX figures to get to the 10.7m Euros

This does not include the cost of mitigation resulting from future carbon taxes or regulation (e.g. replacement of old plant, equipment and machinery or reformulation). Our Climate Transition Action Plan is our mitigation response. We are currently implementing a detailed plan to decarbonise our business and to achieve net zero emissions by 2039.

Comment
No comment necessary

C2.4

(C2.4) Have you identified any climate-related opportunities with the potential to have a substantive financial or strategic impact on your business?
Yes

C2.4a

(C2.4a) Provide details of opportunities identified with the potential to have a substantive financial or strategic impact on your business.

Identifier
Opp1

Where in the value chain does the opportunity occur?
Downstream

Opportunity type
Products and services

Primary climate-related opportunity driver
Development of new products or services through R&D and innovation

Primary potential financial impact
Increased revenues resulting from increased demand for products and services

Company-specific description
i) Company-specific description of opportunity: Our growth and profitability depend on our ability to pre-empt or respond to changing consumer preferences, especially in areas where we have positioned Unilever for future growth such as plant-based products e.g. The Vegetarian Butcher, Hellmann’s, Magnum and Wall’s. Public concern about climate change is higher than ever and consumers are increasingly choosing more sustainable brands. Consumers in a number of our markets are increasingly adopting plant-based diets which have a lower GHG footprint than meat-based diets.
Analysis shows that the global plant-based meat market is growing at a compound annual growth rate of 15.8 per cent and is set to reach $35.4 billion by 2027. To support our growth ambitions, it is imperative that we understand the market opportunities from plant-based foods invest in innovation capability accordingly.

Time horizon
Medium-term

Likelihood
Virtually certain

Magnitude of impact
High

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
1,000,000,000

Potential financial impact figure – minimum (currency)

Potential financial impact figure – maximum (currency)

Explanation of financial impact figure
1) Approach: In 2020, Unilever announced an annual global sales target of €1 billion from plant-based meat and dairy alternatives, by 2025-2027. The figure is an aggregate of the annual turnover from our foods brands which are positioning themselves in the plant-based market, including The Vegetarian Butcher as well as Hellmann’s, Magnum and Wall’s ice cream which are increasing the number of vegan alternatives.

 ii) Financial impact figure calculation/breakdown (A + B + C): Our annual global sales target of €1 billion from plant-based meat and dairy alternatives by 2025-2027 covers sales of all Unilever Food and Refreshment products, containing plant-based meat and dairy alternatives such as meat replacements (A), vegan mayonnaise (B) and vegan ice cream (C).

 iii) Assumptions: We assumed that achieving the goal by 2025-2027 would require a five-fold increase in growth.

Cost to realize opportunity
0

Strategy to realize opportunity and explanation of cost calculation
1) Response to opportunity: We’re capturing opportunities to develop new products and grow our consumer base by appealing to eco-conscious consumers. Our Foods &
Refreshment brands offer a range of vegan and vegetarian variants and continue to actively promote vegetarian and vegan recipes. Our move into the plant-based and vegan categories are being recognised by consumers and the industry. We’re investing heavily in developing new plant-based protein sources and foods at our Hive Foods Innovation Centre in the Netherlands.

ii) Case study of strategy to realize opportunity: Our plant-based meat and dairy replacement business saw strong double-digit growth in 2021 in pursuit of €1 billion annual sales by 2025-2027. This was primarily driven by The Vegetarian Butcher, which is growing in all 55 markets, both in foodservice and retail. The latest addition to its meat alternatives is the Patty on the Back burger, a breakthrough plant-based burger. Not only is the burger lower in calories and fat than meat, it’s higher in fibre and iron and has similar salt levels. The Vegetarian Butcher products are aimed at the increasing number of consumers who identify themselves as part-time vegetarians or flexitarians. The products are made from soy and wheat, and all its protein sources are plant-based.

iii) Cost to realize opportunity calculation/breakdown: We do not disclose the investment required to achieve our plant-based target as this information is commercially sensitive.

Comment
No comment necessary

Identifier
Opp2

Where in the value chain does the opportunity occur?
Direct operations

Opportunity type
Energy source

Primary climate-related opportunity driver
Use of lower-emission sources of energy

Primary potential financial impact
Reduced direct costs

Company-specific description
i) Company-specific description of opportunity: Energy is one of the major overhead costs in running Unilever’s 290+ factories – energy costs are around 5-10% of Unilever’s total operating spend e.g. in India we spend around €25m on electricity annually. There is an opportunity to make cost savings through PPA agreements to install on site renewables, wherever possible and feasible, which not only reduce carbon emissions but also deliver cost savings. We expect that our ambition to eliminate direct greenhouse gas emissions from our operations by 2030 will not only lower overhead costs, but will improve resilience in our energy supply and attract investors who are
increasingly considering carbon risk. In the future, there may also be opportunities in on
site energy storage through third parties.

Time horizon
Long-term

Likelihood
Very likely

Magnitude of impact
Low

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
4,900,000

Potential financial impact figure – minimum (currency)

Potential financial impact figure – maximum (currency)

Explanation of financial impact figure

 i) **Approach:** We contracted with renewable third party energy developers at six sites in
 India to install solar plants in our factories. We negotiated a renewable tariff based on
 the capacity and utilization during the contract period (usually around 15 years in India).
 The investment was from the third party energy developer and hence there is no capex
 cost to Unilever. Unilever pays only the per unit (kWh) tariff to the third party energy
 developer.

 iii) **Financial impact figure calculation/breakdown ((A – B) x C):** The range of savings
 across the six sites (included in the calculation as they are strategically important) is
 between (cumulative) €0.54m and €1.26m by 2036 - totalling €4.9m (cumulative)
 savings by 2036. For each of the six sites in India with on-site renewables we have
 calculated the grid tariff that we pay to the electricity company (A) and the solar tariff
 which we pay to the third party energy developer (B). The difference in the cost between
 the grid tariff and the solar tariff is the saving. We multiply this saving over 15 years (the
 typical length of the PPA contract i.e. to 2036) on the basis of sourced capacity, for the
 six sites (C).

 iii) **Assumptions:** Based on the trend from the last few years, we assume that the grid
tariff will fluctuate and that the solar tariff is fixed for the first year and will increase each
year as per the agreement. Our calculation also assumes that the sites do not change
significantly over the period (e.g. no change in production volume affecting electricity
consumption). We assume the solar plant will become less efficient year on year,
reducing generating capacity.

Cost to realize opportunity
0

Strategy to realize opportunity and explanation of cost calculation
i) Response to opportunity: Unilever has a target to eliminate direct greenhouse gas emissions from our operations by 2030. A key part of this is achieving 100% renewable in our operations by 2030. We’re taking action in a number of areas to shift our energy use to fully renewable including eliminating coal from our energy mix, transitioning to 100% renewable grid electricity (which we achieved in 2020) and installing on site renewables at our factories. Our immediate priority is to decrease unbundled REC purchases and to increase direct renewable electricity purchases where energy legislation allows it and market conditions allow. In 2021, we met 55% of our global energy needs for our manufacturing operations from renewable sources (e.g. on-site biomass, solar, wind, hydro - as well as renewable grid electricity). Currently, Unilever facilities in over 24 countries have on-site solar installations. In addition to our direct actions, we are also working to help create the right policy and regulatory environment which promotes wider adoption of lower emission sources of energy thereby lowering the cost for renewables through greater availability e.g. we’re a founding signatory of RE100.

ii) Case study: India is one of our largest markets by turnover and also in terms of energy consumption. The energy market in India is highly fragmented meaning that energy legislation in some states is enabling for on-site renewables. We currently have 6 factories in 4 states where a third party energy developer has installed on site solar equipment which generates renewable electricity for Unilever. Projected over the contract terms of a typical PPA contract (approximately 15 years), we estimate savings in the region of €4.9m by 2036.

iii) Cost to realize opportunity calculation/breakdown: There is no cost to Unilever as the costs are borne by a third party developer who install the onsite renewables and charges a fixed tariff on generated renewable electricity. The only cost is operational expenditure to pay for the tariff.

Comment
No comment necessary

C3. Business Strategy

C3.1

(C3.1) Does your organization's strategy include a transition plan that aligns with a 1.5°C world?
Row 1

Transition plan
Yes, we have a transition plan which aligns with a 1.5°C world

Publicly available transition plan
Yes

Mechanism by which feedback is collected from shareholders on your transition plan
Our transition plan is voted on at Annual General Meetings (AGMs)

Attach any relevant documents which detail your transition plan (optional)
unilever-climate-transition-action-plan-19032021.pdf

C3.2

(C3.2) Does your organization use climate-related scenario analysis to inform its strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis to inform strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>

C3.2a

(C3.2a) Provide details of your organization’s use of climate-related scenario analysis.

<table>
<thead>
<tr>
<th>Climate-related scenario</th>
<th>Scenario analysis coverage</th>
<th>Temperature alignment of scenario</th>
<th>Parameters, assumptions, analytical choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical climate scenarios</td>
<td>Company-wide</td>
<td>1.5°C</td>
<td>In 2021, as new scientific evidence was released by the UN’s IPCC and the global consensus around the need of governments to commit to a 1.5°C world strengthened, we extended our scenario analyses to assess the impacts of a 1.5°C temperature increase above pre-industrial levels by 2100 on our business in 2030, 2039 and 2050. We publish this analysis as part of our TCFD disclosure in our Annual Report. Analytical choices: We built a scenario model which was bespoke to Unilever. We drew on various physical scenarios (e.g. IPCC RCP 1.9) and various 3rd party scenarios as well as TCFD guidance. The data used was from internal environmental (e.g. scopes 1, 2 and 3 emissions), operational, and financial data and external science-based data and assumptions</td>
</tr>
<tr>
<td>Bespoke physical scenario</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
from reputable and broadly used sources such as the IPCC or the International Energy Agency.

Key assumptions in assessing physical risks included:

By 2050, in a proactive scenario, water scarcity would increase prices by:

- Palm: ~10%
- Commodities and food ingredients: ~11%

By 2050, in a reactive scenario, water scarcity would increase prices by:

- Palm: ~14%
- Commodities and food ingredients: ~16%

By 2050, in a proactive scenario, extreme weather would increase prices by:

- Palm: ~12%
- Commodities and food ingredients: ~14%

By 2050, in a reactive scenario, extreme weather would increase prices by:

- Palm: ~18%
- Commodities and food ingredients: ~21%

Parameters:

In place of using macroeconomic models, for this assessment we used parameters bespoke to Unilever. The overarching parameter used in the analysis was: Unilever having underlying sales growth ahead of its markets, delivering USG in the range of 3% to 5%. Other parameters such as carbon price forecasts, food crop land reduction, electricity price forecasts are outlined in the 'assumptions' part of this answer.

In creating our 1.5°C scenario analysis, we took two pathways – proactive and reactive - and considered the five broad types of risks and opportunities using the TCFD risk framework: Regulatory risks; Market risks; Physical environment risks; Innovative products and services opportunities; and Resource efficiency, resilience, and market opportunities. We identified approximately 40 specific risk and opportunity areas which could impact us in 2030, 2039 and 2050, each of which we assessed qualitatively, supported where
Previously, we made a high-level assessment of the impact of 2°C and 4°C temperature increases due to climate change by 2100. Carried out in 2017, the assessment focused on the material impacts on our business in the year 2030.

Assumptions:
The modelling assumed that our business activities are the same as they are today. While we understand that policy risk and physical impact can happen simultaneously, we made the following simplifying assumptions:

- In the 4°C scenario, we assumed climate policy is less ambitious and emissions remain high so the physical manifestations of climate change are increasingly apparent by 2030. Given this we have not included impacts from regulatory restrictions but focus on those resulting from the physical impacts.

Analytical Choices:
Our aim was to build a scenario model which was bespoke to Unilever. We drew on various physical scenarios (e.g. IPCC RCP 8.5 Scenario) & transition scenarios (e.g. Greenpeace Energy Revolution, IEA WEO 450ppm scenario, IEA 2DS) and various 3rd party scenarios as well as TCFD guidance. We also used internal data sources such as historical financial results, scopes 1, 2 and 3 (value chain) emissions, and commodity spend. The analysis covered Unilever’s full value chain: raw materials, manufacturing, logistics and sales & covered a time horizon of 2030, which is relevant and in line with some of our current GHG emission targets.

We also used internal data sources such as historical financial results, and commodity spend. The analysis covered Unilever’s full value chain: raw materials, manufacturing, logistics and sales & covered time horizons of 2030, 2039, 2050, which is relevant and in line with some of our current GHG emission targets.
Transition scenarios

<table>
<thead>
<tr>
<th>Company-wide</th>
<th></th>
</tr>
</thead>
</table>

Previously, we made a high-level assessment of the impact of 2°C and 4°C temperature increases due to climate change by 2100. Carried out in 2017, the assessment focused on the material impacts on our business in the year 2030.

Assumptions:

The modelling assumed that our business activities are the same as they are today. While we understand that policy risk and physical impact can happen simultaneously, we made the following simplifying assumptions:

- In the 2°C scenario, we assumed that in the period to 2030 society acts rapidly to limit greenhouse gas emissions and puts in place measures to restrain deforestation and discourage emissions (for example implementing carbon pricing at $75-$100 per tonne, taken from the International Energy Agency's 450 scenario). We have assumed that there will be no significant impact to our business from the physical ramifications of climate change by 2030 – i.e. from greater scarcity of water or increased impact of severe weather events. The scenario assesses the impact on our business from regulatory changes.

Analytical Choices:

Our aim was to build a scenario model which was bespoke to Unilever. We drew on various physical scenarios (e.g. IPCC RCP 8.5 Scenario) & transition scenarios (e.g. Greenpeace Energy Revolution, IEA WEO 450ppm scenario, IEA 2DS) and various 3rd party scenarios as well as TCFD guidance. We also used internal data sources such as historical financial results, scopes 1, 2 and 3 (value chain) emissions, and commodity spend. The analysis covered Unilever's full value chain: raw materials, manufacturing, logistics and sales & covered a time horizon of 2030, which is relevant and in line with some of our current GHG emission targets.

We also used internal data sources such as historical financial results, and commodity spend. The analysis covered Unilever's full value chain: raw materials, manufacturing, logistics and sales & covered time.
horizons of 2030, 2039, 2050, which is relevant and in line with some of our current GHG emission targets.

C3.2b

(C3.2b) Provide details of the focal questions your organization seeks to address by using climate-related scenario analysis, and summarize the results with respect to these questions.

Row 1

<table>
<thead>
<tr>
<th>Focal questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal question:</td>
</tr>
<tr>
<td>For the 1.5°C scenario the focal question was: What are the material risk and opportunities that Unilever would face in a world focused on achieving 1.5°C?</td>
</tr>
</tbody>
</table>

Rationale for scenarios selected to address the focal questions:
Our 1.5°C scenario analysis required us to align with mitigation pathways compatible with the 1.5°C warming limit such as RCP1.9.

In assessing the material risks and opportunities Unilever would face in a world focused on achieving 1.5°C we have reviewed in detail two pathways, ‘proactive’ and ‘reactive’, that we assessed as more likely than other more extreme possible pathways. In the ‘proactive’ route, there is an early and steady reduction of emissions as a result of a fast response from all economic actors, meaning there is less dependence on technological advancements to remove carbon from the atmosphere in the second half of the century. Conversely, in the ‘reactive’ route, significant action by economic actors is delayed to 2030, after which a very rapid transition across all actors is required, accompanied by deployment at a very large scale of low-carbon energy and carbon removal activities and technology.

For the 2°C and 4°C scenarios, the focal question was: What are the material impacts to Unilever in the year 2030 in both temperature scenarios?

Rationale for scenarios selected in 2°C and 4°C scenarios to address the focal questions:
Our 2°C and 4°C scenario analysis allowed us to understand mitigation pathways compatible with these two scenarios.

Results of the climate-related scenario analysis with respect to the focal questions
The results of the 1.5°C climate-related scenario analysis with respect to the focal question are:
Key Risks identified:
- Regulatory risks that include carbon pricing, land use regulation, product composition regulations, sourcing transparency and product labelling regulations, extended producer responsibility.
- Market Risks: energy transition and rising energy prices and energy and commodity market volatility.
- Physical environment risks: Water scarcity and extreme weather events.

Opportunities identified:
- Innovative products and services opportunities - growth in plant based or lab- grown foods
- Resource efficiency, resilience and marketing opportunities - investment in energy transition technologies’.

The results of the 2°C with respect to focal question are:
- Carbon pricing is introduced in key countries and hence there are increases in both manufacturing costs and the costs of raw materials such as dairy ingredients and the metals used in packaging.
- Zero net deforestation requirements are introduced and a shift to sustainable agriculture puts pressure on agricultural production, raising the price of certain raw materials.
- The most significant impacts are on our supply chain where costs of raw materials and packaging rise, due to carbon pricing and rapid shift to sustainable agriculture in a 2°C world.

The results of the 4°C climate-related scenario analysis with respect to focal question are:
- Chronic and acute water stress reduces agricultural productivity in some regions, raising prices of raw materials.
- Increased frequency of extreme weather (storms and floods) causes increased incidence of disruption to our manufacturing and distribution networks.
- Temperature increases and extreme weather events reduce economic activity, GDP growth and hence sales levels fall.

Influence on strategy:

The outcomes from our analysis provide us with initial high-level insights into these potential business and financial impacts. These form an important input to our strategic planning process. For example:

We mitigate regulatory risks through our carbon pricing approach - a mechanism which creates a sustainable capital investment fund which is then used to fund capital investments to decarbonise our operations and by decarbonising our operations through eco-efficiency measures in factories, powering our operations with renewables and
transitioning heating and cooling for our factories to lower emission and renewable sources.

We mitigate physical environment risks by investing in new products that work with less water, poor quality water or no water. To mitigate effects from extreme weather we have contingency plans to secure alternative key material supplies at short notice or transfer or share production between manufacturing sites.

We're capitalising on innovative product and service opportunities by offering a range of vegan and vegetarian products, with the aim of growing this business to €1 billion per annum by 2025-2027.

C3.3

(C3.3) Describe where and how climate-related risks and opportunities have influenced your strategy.

<table>
<thead>
<tr>
<th>Have climate-related risks and opportunities influenced your strategy in this area?</th>
<th>Description of influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products and services</td>
<td>Influence on strategy (medium-term horizon): Our growth and profitability depend on our ability to anticipate or respond to changing consumer preferences. Public concern about climate change is higher than ever and consumers are increasingly choosing more sustainable brands. Consumers in a number of our markets are increasingly adopting plant-based diets which have a lower GHG footprint than meat-based diets. The global plant-based meat market is growing significantly and expect the global market for plant-based products to rise to USD 1.6 trillion dollars. To support our growth ambitions, it is imperative that we understand the market opportunities from plant-based foods and invest in innovation capability accordingly. Case study of strategic decision: We have identified plant based as one of our Unilever Compass ‘strategic choices’, to develop our portfolio into high growth spaces. In 2020, Unilever announced an annual global sales target of €1 billion from plant-based meat and dairy alternatives, by 2025-2027. The growth will be driven by the roll-out of The Vegetarian Butcher which is growing in all 55 markets. The latest addition to its meat alternatives is Patty on the back burger. Our plant-based ice cream range continued to grow</td>
</tr>
</tbody>
</table>
with Ben and Jerry's, Magnums, Breyers, Cornetto, Carte D'or, and Swedish Glace. We have also launched Rinde Mas, a blend of herbs spices, vegetables and protein that gives cooks an affordable way to reduce the meat in their dishes.

<table>
<thead>
<tr>
<th>Supply chain and/or value chain</th>
<th>Yes</th>
</tr>
</thead>
</table>

Influence on strategy (medium-term horizon):

Our business depends on purchasing materials, efficient and uninterrupted manufacturing, and the timely distribution of products to our customers. Our operating costs and commodity prices could be disrupted by increased frequency of extreme weather events and changes to weather systems. In response to this risk to our supply chain, we have created a set of Regenerative Agriculture Principles which sit alongside our existing Sustainable Agriculture Code. The principles are agricultural practices focused on delivering positive outcomes in terms capturing carbon, climate resilience, nourishing the soil, increasing farm biodiversity, improving water quality and restoring and regenerating the land. At the start of 2021, we set up a number of Lighthouse Programmes to test implementation of the Regenerative Agriculture Principles in practice. By the end of 2021, we had 53,000 hectares under protection and regeneration in partnership with others. Brands like Knorr are playing a leading role in driving our regenerative agriculture programmes.

In 2020, we set out our ambition to achieve net zero emissions across our value chain by 2039. In response, we’ve developed GHG reduction roadmaps for key materials and ingredients which contribute to our upstream Scope 3 GHG emissions, including dairy. Our roadmaps identify how we can reduce emissions through product reformulations, different raw materials, and supplier innovation partnerships. In 2021, we invited our suppliers to commit to setting a public target to halve absolute GHG emissions by 2030, report their progress and share their data with us.

Case studies of strategic decision:

Through its new Grown for Good initiative, Knorr will create 50 regenerative agriculture projects to transform how its key ingredients are grown. The first three projects are looking at water preservation and soil health with key suppliers of tomatoes, rice and vegetables. These are predicted to
reduce GHG emissions and water use by an estimated 30% while improving biodiversity, soil health and livelihoods.

This programme is supported by our €1 billion Climate & Nature Fund which help brands invest in projects that positively address climate change and protect nature.

<table>
<thead>
<tr>
<th>Investment in R&D</th>
<th>Yes</th>
</tr>
</thead>
</table>

Influence on strategy (medium-term horizon):

Our growth and profitability depend on our ability to pre-empt or respond to changing consumer preferences, which in turn requires investment in R&D. Public concern about sustainability is higher than ever and consumers are increasingly choosing more sustainable brands which have a lower environmental footprint and use fewer chemicals. In response, in September 2020, Unilever announced its ambition to replace all of the carbon derived from fossil fuels in our Home Care formulations with renewable or recycled carbon by 2030. This approach – called ‘Clean Future’ – avoids pumping more carbon from under the ground (in the form of fossil fuels), which would add to the earth’s atmospheric carbon burden when the chemicals biodegrade. We are investing €1 billion in our Clean Future strategy, to finance biotechnology research, CO2 utilisation, low carbon chemistry, biodegradable and water-efficient formulations, and reducing the use of virgin plastic.

Case studies of strategic decision:

Our biggest Home Care brand, Dirt is Good (also known as OMO, Surf Excel, Persil or Skip) is key to our Clean Future ambitions – and leads the transformation of our entire Home Care business. It launched a successful new liquid range that uses plant-based stain removers without compromising on performance. It’s suitable for low-temperature washing, with a lower GHG impact than laundry powders, and is packaged in mostly recycled plastic bottles. It also uses around 70% less plastic than a conventional 3-litre bottle, and is now more biodegradable.

In 2021, we entered a multi-year partnership with Arzeda to design new enzymes for our laundry and cleaning products, including OMO, Surf and Sunlight. Applying the latest advances in digital biology, the new enzymes have the potential to significantly reduce the number of ingredients we use, while delivering superior products, new cleaning
<table>
<thead>
<tr>
<th>Benefits and a lower environmental footprint.</th>
<th>Operations</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence on strategy (medium-term horizon):</td>
<td>Current and emerging laws and regulations could impact our financial performance as governments may take action, such as the introduction of carbon taxes which could increase both manufacturing costs and the costs of raw materials. In 2020, we announced our commitment to achieve zero emissions in our operations by 2030, thereby mitigating the risk of future policy and regulation such as carbon pricing. To deliver this goal, we’re continuously optimising our energy demand through energy efficiency programmes. From these investments, we have reduced our carbon from energy per tonne of production by 77% compared to 2008, and 14% compared to 2020. Recent investments include improving energy efficiency of lighting and manufacturing equipment and installing heat recovery systems. Since 2015, we have reduced our scope 1 and 2 GHG emissions by 64%, which puts us on track to achieve 70% by 2025.</td>
<td></td>
</tr>
<tr>
<td>Case study of strategic decision:</td>
<td>For example, we’re phasing out gas-fired boilers and exploring new renewable heating technologies such as heat pumps, concentrated solar power and lower carbon biogenic-derived sources. These technologies could provide up to half of our thermal energy needs by 2025. We have strict criteria to ensure we deliver genuine lifecycle carbon reductions. In 2022, we will publish details on how we’ll ensure any biofuels we use do not lead to deforestation, compete with food supplies, and are sourced from local waste materials where possible.</td>
<td></td>
</tr>
<tr>
<td>Also, in early 2020, we had stopped using direct coal on-site for thermal energy, except for three factories acquired in 2020 as part of our acquisition of the Horlicks portfolio in India and other Asian markets. In 2021, we eliminated direct coal from these three factories through the use of biomass and biodiesel. We’re exploring options to eliminate indirect coal from steam supplied by third parties by 2030.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C3.4

(C3.4) Describe where and how climate-related risks and opportunities have influenced your financial planning.

<table>
<thead>
<tr>
<th>Financial planning elements that have been influenced</th>
<th>Description of influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Revenues</td>
<td>We have conducted scenario analyses at 2°C & 4°C on the potential impacts of climate change to help us consider and adapt our strategies and financial planning. In 2021, as new scientific evidence was released by the UN’s Intergovernmental Panel on Climate Change (IPCC) and the global consensus around the need of governments to commit to a 1.5°C world strengthened, we extended our scenario analyses to assess the impacts of a 1.5°C temperature increase above pre-industrial levels by 2100 on our business in 2030, 2039 and 2050. Unilever’s revenue growth and profitability is determined by our portfolio, geographical and channel presence and how these evolve over time in response to consumer demand.</td>
</tr>
</tbody>
</table>

Case study:

If Unilever does not make optimal strategic investment decisions taking climate change risks and opportunities into account, then opportunities for growth and improved profitability could be missed. Unilever depends on the ability to continue being relevant, such as in markets where there is an increased demand for plant-based products. We know that consumers in a number of our markets are increasingly adopting plant-based diets which have a lower GHG footprint than meat-based diets. The growth of our plant-based portfolio will be factored into our financial planning over the next five to seven years. The growth will be driven by The Vegetarian Butcher as well as increasing vegan alternatives from brands including Hellmann’s, Magnum and Wall’s. The latest additions to our meat alternative products now include, Patty on the back burger, our plant-based ice cream range continue to grow with Ben and Jerry’s, Magnums, Breyers, Cornetto, Carte D’or, and Swedish Glace. We also launched Rinde Mas, a blend of herbs spices, vegetables and protein that gives cooks an affordable way to reduce the meat in their dishes.

By doing this we’re capitalising on innovative product and service opportunities by offering a range of vegan and vegetarian products. We have a target to grow sales from our plant-based meat and dairy alternatives business to €1 billion per annum by 2025-2027.
C3.5

(C3.5) In your organization’s financial accounting, do you identify spending/revenue that is aligned with your organization’s transition to a 1.5°C world?

No, and we do not plan to in the next two years

C4. Targets and performance

C4.1

(C4.1) Did you have an emissions target that was active in the reporting year?

Absolute target
Intensity target

C4.1a

(C4.1a) Provide details of your absolute emissions target(s) and progress made against those targets.

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>Abs 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year target was set</td>
<td>2016</td>
</tr>
<tr>
<td>Target coverage</td>
<td>Company-wide</td>
</tr>
<tr>
<td>Scope(s)</td>
<td>Scope 1</td>
</tr>
<tr>
<td></td>
<td>Scope 2</td>
</tr>
<tr>
<td>Scope 2 accounting method</td>
<td>Market-based</td>
</tr>
<tr>
<td>Scope 3 category(ies)</td>
<td></td>
</tr>
</tbody>
</table>

Base year

2015

Base year Scope 1 emissions covered by target (metric tons CO2e)

890,801

Base year Scope 2 emissions covered by target (metric tons CO2e)

1,071,076
Base year Scope 3 emissions covered by target (metric tons CO2e)

Total base year emissions covered by target in all selected Scopes (metric tons CO2e)
1,961,877

Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1
100

Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2
100

Base year Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)

Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes
100

Target year
2030

Targeted reduction from base year (%)
100

Total emissions in target year covered by target in all selected Scopes (metric tons CO2e) [auto-calculated]
0

Scope 1 emissions in reporting year covered by target (metric tons CO2e)
565,988

Scope 2 emissions in reporting year covered by target (metric tons CO2e)
144,752

Scope 3 emissions in reporting year covered by target (metric tons CO2e)

Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)
710,740

% of target achieved relative to base year [auto-calculated]
63.7724485276

Target status in reporting year
Underway
Is this a science-based target?
Yes, and this target has been approved by the Science Based Targets initiative

Target ambition
1.5°C aligned

Please explain target coverage and identify any exclusions
The target covers 100% of scope 1 and 2 emissions globally.

Plan for achieving target, and progress made to the end of the reporting year
This target is a continuation of Abs1 reported in 2020. Unilever committed to reduce scope 1 and 2 GHG emissions 100% by 2030 from a 2015 base year. This target has been approved by the Science Based Targets Initiative as meeting the 1.5 degree C warming scenario. We will achieve the target through: 1) reducing intensity of energy consumption and 2) use of 100% renewable energy for all residual energy requirements. During 2021, the sixth year of this target, we reduced absolute scope 1+2 emissions by 13.6% vs 2020, with scope 1 emissions reducing by 6.7% and scope 2 emissions reducing by 33.1%.

More specifically, Unilever plans to transition to achieve 100% renewable electricity and 100% renewable heat by 2030, phase out high-impact HFC refrigerants from cooling systems, halve food waste in our operations by 2025, align capital expenditure with a 1.5 degree pathway, and continue to invest in eco-efficiency programmes to reduce energy demand. The full details can be found in our climate transition action plan here: https://www.unilever.com/planet-and-society/climate-action/

List the emissions reduction initiatives which contributed most to achieving this target

Target reference number
Abs 1

Year target was set
2016

Target coverage
Company-wide

Scope(s)
Scope 1
Scope 2

Scope 2 accounting method
Market-based

Scope 3 category(ies)
Base year

2015

Base year Scope 1 emissions covered by target (metric tons CO2e)
890,801

Base year Scope 2 emissions covered by target (metric tons CO2e)
1,071,076

Base year Scope 3 emissions covered by target (metric tons CO2e)

Total base year emissions covered by target in all selected Scopes (metric tons CO2e)
1,961,877

Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1
100

Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2
100

Base year Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)

Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes
100

Target year

2025

Targeted reduction from base year (%)
70

Total emissions in target year covered by target in all selected Scopes (metric tons CO2e) [auto-calculated]
588,563.1

Scope 1 emissions in reporting year covered by target (metric tons CO2e)
565,988

Scope 2 emissions in reporting year covered by target (metric tons CO2e)
144,752

Scope 3 emissions in reporting year covered by target (metric tons CO2e)
Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)
710,740

% of target achieved relative to base year [auto-calculated]
91.1034978966

Target status in reporting year
Underway

Is this a science-based target?
Yes, and this target has been approved by the Science Based Targets initiative

Target ambition
1.5°C aligned

Please explain target coverage and identify any exclusions
The target covers 100% of scope 1 and 2 emissions globally. Any exclusions to mention?

Plan for achieving target, and progress made to the end of the reporting year
This is a shorter term, interim target towards target Abs 2 which has been approved by the Science-Based Targets initiative as being 1.5C aligned.

Once 70% reduction in scope 1+2 emissions by 2025 is achieved, this will revert to target Abs 2 which aims to achieve 100% reduction by 2030. During 2021, the sixth year of this target, we reduced absolute scope 1+2 emissions by 13.6% vs 2020, with scope 1 emissions reducing by 6.7% and scope 2 emissions reducing by 33.1%. We will achieve the target through: 1) reducing intensity of energy consumption and 2) use of 100% renewable energy for all residual energy requirements.

More specifically, Unilever plans to transition to achieve 100% renewable electricity and 100% renewable heat by 2030, phase out high-impact HFC refrigerants from cooling systems, halve food waste in our operations by 2025, align capital expenditure with a 1.5 degree pathway, and continue to invest in eco-efficiency programmes to reduce energy demand. The full details can be found in our climate transition action plan here: https://www.unilever.com/planet-and-society/climate-action/

List the emissions reduction initiatives which contributed most to achieving this target

Target reference number
Abs 3

Year target was set
2016
Target coverage
Company-wide

Scope(s)
Scope 1
Scope 2

Scope 2 accounting method
Market-based

Scope 3 category(ies)

Base year
2015

Base year Scope 1 emissions covered by target (metric tons CO2e)
890,801

Base year Scope 2 emissions covered by target (metric tons CO2e)
1,071,076

Base year Scope 3 emissions covered by target (metric tons CO2e)

Total base year emissions covered by target in all selected Scopes (metric tons CO2e)
1,961,877

Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1
100

Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2
100

Base year Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)

Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes
100

Target year
2039

Targeted reduction from base year (%)
100
Total emissions in target year covered by target in all selected Scopes (metric tons CO2e) [auto-calculated]
0

Scope 1 emissions in reporting year covered by target (metric tons CO2e)
565,988

Scope 2 emissions in reporting year covered by target (metric tons CO2e)
144,752

Scope 3 emissions in reporting year covered by target (metric tons CO2e)

Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)
710,740

% of target achieved relative to base year [auto-calculated]
63.7724485276

Target status in reporting year
Underway

Is this a science-based target?
Yes, we consider this a science-based target, and the target is currently being reviewed by the Science Based Targets initiative

Target ambition
1.5°C aligned

Please explain target coverage and identify any exclusions
This target is a continuation of Abs 2, with a long-term timeframe to maintain operational emissions at zero beyond 2030. This means any changes in operations following 2030 will need to be aligned with zero operational emissions.

Plan for achieving target, and progress made to the end of the reporting year
Our first ambition is to eliminate emissions from our own operations. Unilever plans to transition to achieve 100% renewable electricity and 100% renewable heat by 2030, phase out high-impact HFC refrigerants from cooling systems, halve food waste in our operations by 2025, align capital expenditure with a 1.5 degree pathway, and continue to invest in eco-efficiency programmes to reduce energy demand. The full details can be found in our climate transition action plan here: https://www.unilever.com/planet-and-society/climate-action/

List the emissions reduction initiatives which contributed most to achieving this target
C4.1b

(C4.1b) Provide details of your emissions intensity target(s) and progress made against those target(s).

Target reference number
 Int 2

Year target was set
 2010

Target coverage
 Business activity

Scope(s)
 Scope 1
 Scope 2
 Scope 3

Scope 2 accounting method
 Market-based

Scope 3 category(ies)
 Category 1: Purchased goods and services
 Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)
 Category 4: Upstream transportation and distribution
 Category 9: Downstream transportation and distribution
 Category 11: Use of sold products
 Category 12: End-of-life treatment of sold products

Intensity metric
 Other, please specify
 Metric tons CO2e per consumer use

Base year
 2010

Intensity figure in base year for Scope 1 (metric tons CO2e per unit of activity)
 0.000000505

Intensity figure in base year for Scope 2 (metric tons CO2e per unit of activity)
 0.000000505

Intensity figure in base year for Scope 3 (metric tons CO2e per unit of activity)
 0.00000495

Intensity figure in base year for all selected Scopes (metric tons CO2e per unit of activity)
 0.00000505
% of total base year emissions in Scope 1 covered by this Scope 1 intensity figure
1

% of total base year emissions in Scope 2 covered by this Scope 2 intensity figure
1

% of total base year emissions in Scope 3 (in all Scope 3 categories) covered by this Scope 3 intensity figure
98

% of total base year emissions in all selected Scopes covered by this intensity figure
70

Target year
2030

Targeted reduction from base year (%)
50

Intensity figure in target year for all selected Scopes (metric tons CO2e per unit of activity) [auto-calculated]
0.00002525

% change anticipated in absolute Scope 1+2 emissions
-100

% change anticipated in absolute Scope 3 emissions
-5

Intensity figure in reporting year for Scope 1 (metric tons CO2e per unit of activity)
0.000000436

Intensity figure in reporting year for Scope 2 (metric tons CO2e per unit of activity)
0.000000436

Intensity figure in reporting year for Scope 3 (metric tons CO2e per unit of activity)
0.0000427

Intensity figure in reporting year for all selected Scopes (metric tons CO2e per unit of activity)
0.0000436

% of target achieved relative to base year [auto-calculated]
27.3267326733
Target status in reporting year
Underway

Is this a science-based target?
Yes, and this target has been approved by the Science Based Targets initiative

Target ambition
2°C aligned

Please explain target coverage and identify any exclusions
Unilever has committed to reduce GHG emissions from the life-cycle of its products by 50% per consumer use by 2030 from a 2010 base-year. This target has been approved by the Science Based Targets Initiative. Based on projections for changes in the number of consumer uses of our products by 2030, this equates to a 5% decrease in absolute emissions. Within this target, we aim to reduce emissions from our own operations (scope 1+2) by 100% by 2030. The baseline for 2010 was calculated from a portfolio of products across 14 countries, covering approximately 70% of our sales volume. By 2020, the current reporting year, these 14 countries covered 60-70% of sales volume.

Since 2010, our greenhouse impact per consumer use has reduced by 14%. We are making good progress particularly in Foods & Refreshment and Home Care where we have reduced per consumer greenhouse gas emissions since 2010 by 30% and 43% respectively. The per consumer use greenhouse impact of our Beauty & Personal Care Division has increased by 6% over the same period, driven primarily by the acquisition of brands with high greenhouse gas emissions associated with consumer hot water use, including hair and bath/shower products.

Base year and start year clarification: 2010 was the first year of our reporting (in our 2011 Unilever Sustainable Living Plan Report) and is our baseline. We compare our cumulative progress to 2010, as stated in the target.

Plan for achieving target, and progress made to the end of the reporting year
Along our value chain, we have opportunities to reduce emissions from our current product portfolio through targeted interventions, both upstream and downstream of our operations. Our primary focus areas are our raw and packaging materials, our logistics and distribution networks, and reducing emissions from business travel, ice cream cabinets, aerosol propellants and plastic packaging.

Key initiatives include:
- Integrated GHG roadmaps for all key materials and ingredients.
- Zero deforestation by 2023 in palm oil, tea, soy, and cocoa
- Estimated 40-50% reduction in logistics emissions by 2030
- At least 25% recycled plastic by 2025
- 100% EV or hybrids across our global fleets by 2030
- Reduce emissions from aerosol propellants in North America

Our entire climate transition action plan can be found here:
List the emissions reduction initiatives which contributed most to achieving this target

C4.2

(C4.2) Did you have any other climate-related targets that were active in the reporting year?

Net-zero target(s)
Other climate-related target(s)

C4.2b

(C4.2b) Provide details of any other climate-related targets, including methane reduction targets.

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>Oth 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year target was set</td>
<td>2021</td>
</tr>
<tr>
<td>Target coverage</td>
<td>Business division</td>
</tr>
<tr>
<td>Target type: absolute or intensity</td>
<td>Intensity</td>
</tr>
<tr>
<td>Target type: category & Metric (target numerator if reporting an intensity target)</td>
<td>Energy consumption or efficiency</td>
</tr>
<tr>
<td></td>
<td>GJ</td>
</tr>
<tr>
<td>Target denominator (intensity targets only)</td>
<td>metric ton of product</td>
</tr>
<tr>
<td>Base year</td>
<td>2020</td>
</tr>
<tr>
<td>Figure or percentage in base year</td>
<td>1.21</td>
</tr>
<tr>
<td>Target year</td>
<td>2021</td>
</tr>
<tr>
<td>Figure or percentage in target year</td>
<td></td>
</tr>
</tbody>
</table>
1.19

Figure or percentage in reporting year

1.23

% of target achieved relative to base year [auto-calculated]

-100

Target status in reporting year

Underway

Is this target part of an emissions target?

This target is part of target Abs 1, our SBTi approved target to reduce scope 1 + 2 emissions by 100% by 2030. We consider reducing energy consumption as being the number 1 priority towards reducing absolute CO2 emissions as it also gives a cost benefit which can be re-invested in renewable energy.

Is this target part of an overarching initiative?

EV100
Science Based targets initiative - other

Please explain target coverage and identify any exclusions

This target applies to Unilever’s manufacturing sites only, excluding distribution centres, warehouses, offices and data centres which comprised 6% of energy usage in 2020. Our Unilever Sustainable Living Plan manufacturing targets are based on CO2 emissions. Clearly, energy used in manufacturing is central to achieving this target and we therefore set annual targets each year to drive reductions in energy used in manufacturing. In 2020, we set a target of 2% reduction of energy used in manufacturing per tonne of production. We achieved 3.1% reduction in this intensity measure relative to the previous 12 months. Compared to our baseline year of 2008, energy use per tonne of production in 2020 was 31% lower.

Plan for achieving target, and progress made to the end of the reporting year

Unilever allocates capital investment for those projects which contribute most significantly towards our climate targets to reduce CO2 emissions from energy use in manufacturing. This centrally managed fund was used to accelerate clean technology investment at our sites, resource energy reduction projects (as well as other eco-efficiency and Scope 1 and 2 emissions reduction improvements requiring higher level of investment, >€ 0.5 million). The selection of projects for investment was managed globally and based on a combination of eco-benefit and financial return.

Everyone in our manufacturing organization is encouraged to share their successes in implementing reduction projects. Through our global Manufacturing Sustainability intranet site, project teams summarise their achievements in ‘Proud Practices’, which are then shared with all other sites. We now have over 170 ‘Proud Practices’ to share. This acts as a spur for other manufacturing sites to repeat the project in their own factory and achieve rapid global roll out of eco efficiency projects.
List the actions which contributed most to achieving this target

C4.2c

(C4.2c) Provide details of your net-zero target(s).

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>NZ1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target coverage</td>
<td>Company-wide</td>
</tr>
<tr>
<td>Absolute/intensity emission target(s) linked to this net-zero target</td>
<td></td>
</tr>
<tr>
<td>Abs1</td>
<td></td>
</tr>
<tr>
<td>Abs2</td>
<td></td>
</tr>
<tr>
<td>Int1</td>
<td></td>
</tr>
<tr>
<td>Int2</td>
<td></td>
</tr>
<tr>
<td>Target year for achieving net zero</td>
<td>2039</td>
</tr>
<tr>
<td>Is this a science-based target?</td>
<td></td>
</tr>
<tr>
<td>Yes, we consider this a science-based target, and we have committed to seek validation of this target by the Science Based Targets initiative in the next 2 years</td>
<td></td>
</tr>
<tr>
<td>Please explain target coverage and identify any exclusions</td>
<td></td>
</tr>
<tr>
<td>We have committed to reducing gross emissions in our value chain in line with the Paris-aligned trajectory to 2030, and we have committed to balancing residual emissions by 2039 and from then onwards with carbon removal credits.</td>
<td></td>
</tr>
<tr>
<td>We are at the start of the net zero journey and have not yet established the extent to which we can reduce our gross emissions by 2039, and therefore the level of balancing carbon removals required. This is work in progress.</td>
<td></td>
</tr>
<tr>
<td>Neither have we committed to a defined compensation pathway. However, our brands may invest in compensation and neutralisation well ahead of 2039 through the €1bn Climate & Nature Fund, where those actions can be used to drive consumer preference. For example, our Beauty & Personal Care division has committed to help protect and regenerate 1.5 million hectares of land, forests and oceans by 2030.</td>
<td></td>
</tr>
<tr>
<td>Do you intend to neutralize any unabated emissions with permanent carbon removals at the target year?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Planned milestones and/or near-term investments for neutralization at target year</td>
<td></td>
</tr>
<tr>
<td>These milestones are being developed.</td>
<td></td>
</tr>
</tbody>
</table>
Planned actions to mitigate emissions beyond your value chain (optional)

C4.3

(C4.3) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.

Yes

C4.3a

(C4.3a) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

<table>
<thead>
<tr>
<th>Number of initiatives</th>
<th>Total estimated annual CO2e savings in metric tonnes CO2e (only for rows marked *)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under investigation</td>
<td></td>
</tr>
<tr>
<td>To be implemented*</td>
<td>57</td>
</tr>
<tr>
<td>Implementation commenced*</td>
<td>41</td>
</tr>
<tr>
<td>Implemented*</td>
<td>43</td>
</tr>
<tr>
<td>Not to be implemented</td>
<td></td>
</tr>
</tbody>
</table>

C4.3b

(C4.3b) Provide details on the initiatives implemented in the reporting year in the table below.

Initiative category & Initiative type
- Other, please specify
- Other, please specify
 - Dedicated budget for company wide energy efficiency projects

Estimated annual CO2e savings (metric tonnes CO2e)
- 8,782

Scope(s) or Scope 3 category(ies) where emissions savings occur
- Scope 1
- Scope 2 (location-based)
- Scope 2 (market-based)

Voluntary/Mandatory
- Voluntary
Annual monetary savings (unit currency – as specified in C0.4)
1,200,000

Investment required (unit currency – as specified in C0.4)
3,200,000

Payback period
1-3 years

Estimated lifetime of the initiative
11-15 years

Comment
 Implemented projects include spend >80% of authorised amount for a given project

Implementation commenced projects include spend <80% of authorised amount for a given project

To be implemented represents carbon projects allocated funding for 2022

C4.3c

(C4.3c) What methods do you use to drive investment in emissions reduction activities?

<table>
<thead>
<tr>
<th>Method</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated budget for energy efficiency</td>
<td>Unilever allocates capital investment for those projects which contribute most significantly towards our climate targets to reduce CO2 emissions from energy use in manufacturing. This centrally managed fund was used to accelerate clean technology investment at our sites, resource energy reduction projects (as well as other eco-efficiency and Scope 1 and 2 emissions reduction improvements requiring higher level of investment, >€ 0.5 million). The selection of projects for investment was managed globally and based on a combination of eco-benefit and financial return.</td>
</tr>
<tr>
<td>Dedicated budget for other emissions reduction activities</td>
<td>As part of our strategy to achieve 100% of purchased grid electricity from renewable sources by 2020, Unilever is now sourcing certified green power in all regions. Our business incurs a small cost premium for this compared to conventional grid electricity. However, we believe the cost is more than offset by cost savings from increased energy efficiency with the additional benefit of our brands being able to claim they are reducing their carbon footprint.</td>
</tr>
<tr>
<td>Employee engagement</td>
<td>Everyone in our manufacturing organization is encouraged to share their successes in implementing reduction projects. Through our global Manufacturing Sustainability intranet site, project teams summarise their achievements in ‘Proud Practices’, which are then shared with all other sites. We now have over 170 ‘Proud Practices’ to share. This acts as a spur for other manufacturing sites to repeat the project in their own factory and achieve rapid global roll out of eco efficiency projects.</td>
</tr>
</tbody>
</table>
C-AC4.4/C-FB4.4/C-PF4.4

(C-AC4.4/C-FB4.4/C-PF4.4) Do you implement agriculture or forest management practices on your own land with a climate change mitigation and/or adaption benefit? Yes

C-AC4.4a/C-FB4.4a/C-PF4.4a

(C-AC4.4a/C-FB4.4a/C-PF4.4a) Specify the agricultural or forest management practice(s) implemented on your own land with climate change mitigation and/or adaptation benefits and provide a corresponding emissions figure, if known.

Management practice reference number
MP1

Management practice
Biodiversity considerations

Description of management practice
Unilever owns tea plantations in Kenya and Tanzania. These comply with the Rainforest Alliance certification standard, which require such/similar practices on biodiversity conservation including: ensuring that high value conservation areas are not destroyed; ensuring that farms conserve all natural ecosystems and have not destroyed forest or other natural ecosystems; and ensuring that production activities do not degrade any protected area. The standard is available here: https://www.rainforest-alliance.org/business/sas/resource-item/rainforest-alliance-sustainable-agriculture-standard/

Primary climate change-related benefit
Increase carbon sink (mitigation)

Estimated CO2e savings (metric tons CO2e)
0

Please explain
There is research currently underway to quantify this for crops grown against Unilever’s Sustainable Agriculture Code (SAC) standard.

Management practice reference number
MP4

Management practice
Diversifying farmer income
Description of management practice

Unilever owns tea plantations in Kenya and Tanzania. These comply with the Rainforest Alliance certification standard, which require such/similar practices. The standard is available here: https://www.rainforest-alliance.org/business/sas/resource-item/rainforest-alliance-sustainable-agriculture-standard/

Between 2006 and 2016 we worked with the Kenya Tea Development Agency (KTDA) and the NGO IDH, to provide education and training through Farmer Field Schools. The programme enabled 86,000 lead farmers to access initiatives aiming to improve their agricultural practices. It helped over 580,000 farms achieve the certification standards set by the Rainforest Alliance – establishing a solid foundation for tea growing in Kenya which continues to be run by KTDA.

Primary climate change-related benefit

Increasing resilience to climate change (adaptation)

Estimated CO2e savings (metric tons CO2e)

0

Please explain

This management practice is about farmer livelihoods and is not intended to directly reduce CO2e emissions.

Management practice reference number

MP12

Management practice

Low carbon energy use

Description of management practice

Unilever owns tea plantations in Kenya and Tanzania. Renewable energy infrastructure has been established at plantations, in the form of solar and hydroelectric schemes, as well as biomass conversion for boilers.

Primary climate change-related benefit

Emission reductions (mitigation)

Estimated CO2e savings (metric tons CO2e)

5,700

Please explain

Based on cumulative CO2 savings between 2018 and 2020, driven by renewable electricity (not biomass which has been in use since 2008). Figure is for Kenya and Tanzania tea plantations only.
Management practice reference number
MP14

Management practice
Organic farming

Description of management practice
An area of 389 hectares of Kenyan tea plantation has been converted from conventional to organic tea production.

Primary climate change-related benefit
Reduced demand for fertilizers (adaptation)

Estimated CO2e savings (metric tons CO2e)
0

Please explain
This management practice is about climate adaptation and is not intended to directly reduce CO2e emissions.

Management practice reference number
MP18

Management practice
Reducing energy use

Description of management practice
Unilever owns tea plantations in Kenya and Tanzania. Renewable energy infrastructure has been established at plantations, in the form of solar and hydroelectric schemes, as well as biomass conversion for boilers.

Primary climate change-related benefit
Emission reductions (mitigation)

Estimated CO2e savings (metric tons CO2e)
5,700

Please explain
Based on cumulative CO2 savings between 2018 and 2020, driven by renewable electricity (not biomass which has been in use since 2008). Figure is for Kenya and Tanzania tea plantations only.
MP20

Management practice
Replacing fossil fuels by renewable energy sources

Description of management practice
Unilever owns tea plantations in Kenya and Tanzania. Renewable energy infrastructure has been established at plantations, in the form of solar and hydroelectric schemes, as well as biomass conversion for boilers.

Primary climate change-related benefit
Emission reductions (mitigation)

Estimated CO2e savings (metric tons CO2e)
5,700

Please explain
Based on cumulative CO2 savings between 2018 and 2020, driven by renewable electricity (not biomass which has been in use since 2008). Figure is for Kenya and Tanzania tea plantations only.

C4.5

(C4.5) Do you classify any of your existing goods and/or services as low-carbon products?
Yes

C4.5a

(C4.5a) Provide details of your products and/or services that you classify as low-carbon products.

Level of aggregation
Group of products or services

Taxonomy used to classify product(s) or service(s) as low-carbon
No taxonomy used to classify product(s) or service(s) as low carbon

Type of product(s) or service(s)
Other
Other, please specify
Food products

Description of product(s) or service(s)
We continued to step up our plant-based offerings through a number of our brands. Our plant-based meat and dairy replacement business saw strong double-digit growth in 2021 in pursuit of €1 billion annual sales by 2025-2027. This was primarily driven by The
Vegetarian Butcher, which is growing in all 55 markets, both in foodservice and retail. The latest addition to its meat alternatives is the Patty on the Back burger, a breakthrough plant-based burger. Not only is the burger lower in calories and fat than meat, it’s higher in fibre and iron and has similar salt levels. Our plant-based ice cream range continued to grow with brands like Ben & Jerry’s, Magnum, Breyers, Cornetto, Carte D’Or and Swedish Glace offering non-dairy options. With Magnum’s Vegan Sea Salt Caramel winning a PETA Vegan Food Award in 2021, all the brand’s vegan flavours are now award-winning. Certified vegan non-dairy now makes up over 25% of Ben & Jerry’s pint flavours in the US. We’re also using cutting-edge food science to find alternative proteins and new ways to cook without meat. In Argentina, Colombia and Mexico, we launched Rinde Más, a blend of herbs, spices, vegetables and protein that gives cooks an affordable way to reduce the meat in their dishes. We were again named by investor network FAIRR as a pioneer in sustainable protein research and innovation and ranked number one in its protein transition index for 2021.

Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Yes

Methodology used to calculate avoided emissions

Other, please specify

Product lifecycle assessment according to ISO14040/44 standards

Life cycle stage(s) covered for the low-carbon product(s) or services(s)

Cradle-to-gate

Functional unit used

kg

Reference product/service or baseline scenario used

Beef meat from beef cattle at slaughterhouse

Life cycle stage(s) covered for the reference product/service or baseline scenario

Cradle-to-gate

Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario

0.0387

Explain your calculation of avoided emissions, including any assumptions

The calculations are based on a beef patty from our The Vegetarian Butcher brand as an example. Study completed by Unilever’s Safety & Environmental Assurance Centre (SEAC), following ISO14040/44 standards but without external peer review. Results are generic for all markets in Europe but there will be marginal variation for specific countries. Results based on current recipes, ingredient sourcing and processing technologies.
Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year
0.5

C5. Emissions methodology

C5.1

(C5.1) Is this your first year of reporting emissions data to CDP?
No

C5.1a

(C5.1a) Has your organization undergone any structural changes in the reporting year, or are any previous structural changes being accounted for in this disclosure of emissions data?

Row 1

Has there been a structural change?
No

C5.1b

(C5.1b) Has your emissions accounting methodology, boundary, and/or reporting year definition changed in the reporting year?

<table>
<thead>
<tr>
<th>Change(s) in methodology, boundary, and/or reporting year definition?</th>
<th>Details of methodology, boundary, and/or reporting year definition change(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Yes, a change in methodology</td>
<td>From 2021, we're aligning our reporting with the updated RE100 guidance which requires us to make two changes:</td>
</tr>
</tbody>
</table>

First, for renewable electricity certified with RECs, we will only report as 'renewable' the electricity where the accompanying RECs originate in the same market. While we intend to maintain our commitment to ensure our purchase of renewable grid electricity is matched by an equivalent volume of renewable electricity generation, we’ll no longer count the purchase of unbundled RECs from an adjacent market in our renewable electricity reporting.

The second change is to include non-grid sourced electricity. Currently, we use biomass in combined heat and power (CHP) boilers at a limited number of sites. As well as providing
thermal energy (see below), they also supply our sites with electricity. From 2021 we’ll include this within our renewable electricity reporting. We’ll also include the renewable electricity generated at our factory sites, for example, the on-site solar installations in 24 countries.

C5.1c

(C5.1c) Have your organization’s base year emissions been recalculated as result of the changes or errors reported in C5.1a and C5.1b?

<table>
<thead>
<tr>
<th>Base year recalculation</th>
<th>Base year emissions recalculation policy, including significance threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Yes</td>
<td>Our 2015 baseline was restated as a result of the updated RE100 renewable electricity reporting guidance. Originally our baseline was 1,866,706T CO2e and the updated baseline year emissions is 1,961,877T CO2e, which represents an increase of 5.1%. Our metrics team determine the significance threshold and approve change requests related to base year recalculations. For all metrics, including our baseline, each metric owner needs to formally submit a request before any calculation methodologies or recalculations changes can occur. The acceptance of the request is based on the materiality of the change to the independent metric. If the recalculation results in a whole number change or a rounding up/down of the original figure, this will be approved.</td>
</tr>
</tbody>
</table>

C5.2

(C5.2) Provide your base year and base year emissions.

Scope 1

<table>
<thead>
<tr>
<th>Base year start</th>
<th>October 1, 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year end</td>
<td>September 30, 2015</td>
</tr>
<tr>
<td>Base year emissions (metric tons CO2e)</td>
<td>890,800.675</td>
</tr>
</tbody>
</table>

Comment

This is the baseline used for our science based targets.

Scope 2 (location-based)
Base year start
October 1, 2014

Base year end
September 30, 2015

Base year emissions (metric tons CO2e)
1,622,369

Comment
Our SBT baseline uses our market based figure.

Scope 2 (market-based)

Base year start
October 1, 2014

Base year end
September 30, 2015

Base year emissions (metric tons CO2e)
1,071,076.327

Comment
This is the baseline used for our science based targets.

Scope 3 category 1: Purchased goods and services

Base year start
July 1, 2009

Base year end
June 30, 2010

Base year emissions (metric tons CO2e)
15,958,664

Comment

Scope 3 category 2: Capital goods

Base year start

Base year end

Base year emissions (metric tons CO2e)

Comment
Unilever has conducted estimates of emissions associated with this category in the past and these have indicated them to be small (est.1%) compared to size of our product footprint.

Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)

<table>
<thead>
<tr>
<th>Base year start</th>
<th>Base year end</th>
<th>Base year emissions (metric tons CO2e)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scope 3 category 4: Upstream transportation and distribution

<table>
<thead>
<tr>
<th>Base year start</th>
<th>Base year end</th>
<th>Base year emissions (metric tons CO2e)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1, 2009</td>
<td>June 30, 2010</td>
<td>261,766</td>
<td>This is the baseline used for our science based targets.</td>
</tr>
</tbody>
</table>

Scope 3 category 5: Waste generated in operations

<table>
<thead>
<tr>
<th>Base year start</th>
<th>Base year end</th>
<th>Base year emissions (metric tons CO2e)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scope 3 category 6: Business travel

<table>
<thead>
<tr>
<th>Base year start</th>
<th>Base year end</th>
<th>Base year emissions (metric tons CO2e)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Base year start

Base year end

Base year emissions (metric tons CO2e)

Comment
Unilever has conducted estimates of emissions associated with this category in the past and these have indicated them to be small (est.1%) compared to size of our product footprint.

Scope 3 category 7: Employee commuting

Base year start

Base year end

Base year emissions (metric tons CO2e)

Comment
Unilever has conducted estimates of emissions associated with this category in the past and these have indicated them to be small (est.1%) compared to size of our product footprint.

Scope 3 category 8: Upstream leased assets

Base year start

Base year end

Base year emissions (metric tons CO2e)

Comment
Unilever has conducted estimates of emissions associated with this category in the past and these have indicated them to be small (est.1%) compared to size of our product footprint.

Scope 3 category 9: Downstream transportation and distribution

Base year start
July 1, 2009

Base year end
June 30, 2010

Base year emissions (metric tons CO2e)
3,694,792

Comment
This is the baseline used for our science based targets

Scope 3 category 10: Processing of sold products

Base year start

Base year end

Base year emissions (metric tons CO2e)

Comment
Category not relevant.

Scope 3 category 11: Use of sold products

Base year start
July 1, 2009

Base year end
June 30, 2010

Base year emissions (metric tons CO2e)
34,635,100

Comment
This is the baseline used for our science based targets

Scope 3 category 12: End of life treatment of sold products

Base year start
July 1, 2010

Base year end
June 30, 2010

Base year emissions (metric tons CO2e)
2,198,003

Comment
This is the baseline used for our science based targets

Scope 3 category 13: Downstream leased assets

Base year start
<table>
<thead>
<tr>
<th>Base year end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year emissions (metric tons CO2e)</td>
</tr>
<tr>
<td>Comment</td>
</tr>
<tr>
<td>Category not relevant.</td>
</tr>
</tbody>
</table>

Scope 3 category 14: Franchises

<table>
<thead>
<tr>
<th>Base year start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year end</td>
</tr>
<tr>
<td>Base year emissions (metric tons CO2e)</td>
</tr>
<tr>
<td>Comment</td>
</tr>
<tr>
<td>Category not relevant.</td>
</tr>
</tbody>
</table>

Scope 3 category 15: Investments

<table>
<thead>
<tr>
<th>Base year start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year end</td>
</tr>
<tr>
<td>Base year emissions (metric tons CO2e)</td>
</tr>
<tr>
<td>Comment</td>
</tr>
<tr>
<td>Category not relevant.</td>
</tr>
</tbody>
</table>

Scope 3: Other (upstream)

<table>
<thead>
<tr>
<th>Base year start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base year end</td>
</tr>
<tr>
<td>Base year emissions (metric tons CO2e)</td>
</tr>
<tr>
<td>Comment</td>
</tr>
<tr>
<td>Category not relevant.</td>
</tr>
</tbody>
</table>
Scope 3: Other (downstream)

Base year start

Base year end

Base year emissions (metric tons CO2e)

Comment
 Category not relevant.

C5.3

(C5.3) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.

The Greenhouse Gas Protocol Agricultural Guidance: Interpreting the Corporate Accounting and Reporting Standard for the Agricultural Sector
Other, please specify

For scope 3 product life cycle emissions we measure the full GHG footprint of our product portfolio and annual sales using an LCA method compliant with the ISO 14040 standard.

C6. Emissions data

C6.1

(C6.1) What were your organization’s gross global Scope 1 emissions in metric tons CO2e?

Reporting year

Gross global Scope 1 emissions (metric tons CO2e) 565,987.707

Start date
 October 1, 2020

End date
 September 30, 2021

Comment

Past year 1
Gross global Scope 1 emissions (metric tons CO2e)
606,771.416

Start date
October 1, 2019

End date
September 30, 2020

Comment
For the current reporting year, there has been a 6.7% decrease in the Gross global Scope 1 emissions (metric tons CO2e) since the previous reporting year.

C6.2

(C6.2) Describe your organization’s approach to reporting Scope 2 emissions.

Row 1

Scope 2, location-based
We are reporting a Scope 2, location-based figure

Scope 2, market-based
We are reporting a Scope 2, market-based figure

Comment
In calculation of Scope 2, market-based emissions and grid average emissions factors, as published by IEA, have been used where we do not have contractual instruments or specific contracts for reduced emission factor electricity purchases. We have not found it possible to obtain supplier-specific emission factors or residual mix data for markets where the GHG Protocol Scope 2 guidance suggests that they should be applied. For Unilever, this is primarily countries outside Europe and North America. We intend to apply supplier-specific emissions factors in subsequent years as soon as they become available.

Unilever has aligned with new RE100 methodology for exclusion of Renewable energy purchased outside market boundary and inclusion of any Energy (Electricity) generated from off grid sources. This change was applied to previous years and historical records, and published in the latest annual report and accounts.

C6.3

(C6.3) What were your organization’s gross global Scope 2 emissions in metric tons CO2e?

Reporting year

Scope 2, location-based
1,244,504.697
Scope 2, market-based (if applicable)

144,752.17

Start date
October 1, 2020

End date
September 30, 2021

Comment

Past year 1

Scope 2, location-based

1,264,328

Scope 2, market-based (if applicable)

216,740

Start date
October 1, 2019

End date
September 30, 2020

Comment

Scope 2, market-based emissions have been recalculated since being reported in CDP 2021 to align with CDP & RE100's market boundary criteria for reporting renewable energy certificates. The Scope 2, market-based emissions previously reported were 171,906 tonnes.

For the previous reporting year, this has resulted in a decrease of 1.6% in our scope 2 (Location-based) emissions and 33.2% decrease in our scope 2 (market-based) emissions compared to those reported previously.

The scope 2 market-based figure for last year was restated in the latest annual report. The restatements relate to the adoption of the new RE100 methodology for exclusion of Renewable energy purchased outside market boundary and inclusion of any Energy (Electricity) generated from off grid sources. This change was applied to previous years and historical records, and published in the latest annual report and accounts.

C6.4

(C6.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1 and Scope 2 emissions that are within your selected reporting boundary which are not included in your disclosure?

Yes
C6.4a

(C6.4a) Provide details of the sources of Scope 1 and Scope 2 emissions that are within your selected reporting boundary which are not included in your disclosure.

<table>
<thead>
<tr>
<th>Source</th>
<th>Small non-manufacturing sites such as marketing and sales offices</th>
</tr>
</thead>
</table>

Relevance of Scope 1 emissions from this source

Emissions are not relevant

Relevance of location-based Scope 2 emissions from this source

Emissions are not relevant

Relevance of market-based Scope 2 emissions from this source (if applicable)

Emissions are not relevant

Explain why this source is excluded

Energy consumption data (used to calculate Scope 1 and Scope 2 emissions) is currently captured for larger non-manufacturing sites (i.e. large offices), which consume approximately 90% of the total energy consumption of all non-manufacturing sites. The remaining 10% of energy consumption for non-manufacturing includes a number of small offices which equates to less than 0.2% of total energy consumption for all operations, and are therefore not considered to be material within Unilever’s total emissions.

Estimated percentage of total Scope 1+2 emissions this excluded source represents

0

Explain how you estimated the percentage of emissions this excluded source represents

Scope 1+2 emissions for larger offices, research centres and data centres comprise approximately 1.8% of reported operational emissions. If below 10% of energy usage for these sites is being excluded, assuming that the energy intensity is similar to that of the sites being included, then the excluded sources would represent below 0.2% of total emissions.

C6.5

(C6.5) Account for your organization’s gross global Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

Evaluation status

Relevant, calculated
Emissions in reporting year (metric tons CO2e)
14,589,661

Emissions calculation methodology
Other, please specify
We measure the full GHG footprint of our product portfolio and annual sales using an LCA method compliant with the ISO 14040 standard

Percentage of emissions calculated using data obtained from suppliers or value chain partners
25

Please explain
We use a life cycle based approach to calculate our scope 3 emissions. This uses a combination of supplier specific data and industry average values. We do not calculate the specific percentage requested but estimate that approx. 25% of our total purchased materials (good and services) emissions are based on supplier specific life cycle inventories and volumes.

Capital goods

Evaluation status
Not relevant, explanation provided

Please explain
Given the nature of our business, we do not include the embedded emissions associated with capital goods. Our capital assets (factories and equipment) have long lifespans (>10 years) and their relative footprint is small (<1%) compared to the footprint of the volume of products they produce over their lifetime. This has been confirmed in Life Cycle Analysis studies (e.g. EU PEF studies).

Fuel-and-energy-related activities (not included in Scope 1 or 2)

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
438,607

Emissions calculation methodology
Supplier-specific method
Fuel-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
100

Please explain
CO2e factors are based on 2021 Guidelines to Defra / DECC’s GHG Conversion Factors for Company Reporting. Calculated from imported energy usage by energy type as reported in our web-based Environmental Performance Reporting (EPR) system for all Unilever-owned manufacturing sites globally, plus warehouses, distribution centres, offices and data centres within our scope of reporting.

CO2e factors for fuels represent indirect emissions associated with the extraction and transport of primary fuels as well as the refining, distribution, storage and retail of finished fuels. Identity of fuel used by specific suppliers represents 14% of S3 emissions in this category.

Upstream transportation and distribution

<table>
<thead>
<tr>
<th>Evaluation status</th>
<th>Relevant, calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions in reporting year (metric tons CO2e)</td>
<td>271,171</td>
</tr>
<tr>
<td>Emissions calculation methodology</td>
<td>Other, please specify</td>
</tr>
<tr>
<td></td>
<td>To calculate emissions in this category, ISO 14040 series of Life Cycle Analysis standards. We use life cycle inventory data for processes/activities using sources such as Ecoinvent, IEA energy data and internal data on habits and specifications.</td>
</tr>
<tr>
<td>Percentage of emissions calculated using data obtained from suppliers or value chain partners</td>
<td>0</td>
</tr>
<tr>
<td>Please explain</td>
<td>In order to calculate emissions in this category, Unilever used ISO 14040 series of Life Cycle Analysis standards. We use life cycle inventory data for processes/activities using sources such as Ecoinvent, IEA energy data and internal data on habits and specifications. The studies are performed/ modelled in GaBi software. All of the data is based on secondary data. The results are obtained from Unilever’s annual GHG footprint analysis.</td>
</tr>
</tbody>
</table>

Waste generated in operations

<table>
<thead>
<tr>
<th>Evaluation status</th>
<th>Not relevant, explanation provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please explain</td>
<td>Unilever has conducted estimates of emissions associated with this category in the past and these have indicated them to be small (est.1%) compared to size of our product footprint.</td>
</tr>
</tbody>
</table>

Business travel

<table>
<thead>
<tr>
<th>Evaluation status</th>
<th></th>
</tr>
</thead>
</table>
Not relevant, explanation provided

Please explain
Unilever has conducted estimates of emissions associated with this category in the past and these have indicated them to be small (est.1%) compared to size of our product footprint.

Employee commuting

Evaluation status
Not relevant, explanation provided

Please explain
Unilever has conducted estimates of emissions associated with this category in the past and these have indicated them to be small (est.<1%) compared to size of our product footprint.

Upstream leased assets

Evaluation status
Not relevant, explanation provided

Please explain
As a manufacturer of fast moving consumer goods, we have very limited or no upstream leased assets. We are a purchaser of raw materials and the emissions in our upstream value chain are accounted for in our scope 3 (suppliers) footprint. 0 related emissions related to this row.

Downstream transportation and distribution

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
2,958,761

Emissions calculation methodology
Other, please specify
ISO 14040 series of LCA standards

Percentage of emissions calculated using data obtained from suppliers or value chain partners
65

Please explain
In order to calculate emissions in this category, Unilever uses the ISO 14040 series of LCA standards. We use life cycle inventory data for processes/activities using sources such as Ecoinvent, IEA energy data and internal data on habits and specifications. The studies are performed/modelled in GaBi software. Downstream distribution is calculated using average distances and modes of transport derived from data collected from our distribution network and logistic providers. GHG emissions reported covers
According to our analysis, GHG emissions from downstream transportation and distribution (including distribution and retail) accounts for 5% of our total GHG footprint - the third largest source of GHG emissions for Unilever. There are also significant risks associated climate change in our downstream transportation and distribution chain. Our logistics network transports our finished goods over 1.5 billion kilometres each year from our factories to where they are sold. The transport sector is still heavily reliant on fossil fuels which means that as our business grows, our CO2 emissions from transport are also at risk of increasing – impacting the cost of transportation as a result of carbon taxes. We can take direct action on these emissions. Since 2010, we’ve achieved a 38% reduction improvement in our CO2 efficiency through reducing the overall number of kilometres travelled, avoiding wasted journeys and switching to greener transport options. We also work with retailers to introduce more energy efficient ice cream freezer cabinets - we’ve purchased over 2.9 million with lower carbon emissions.

Processing of sold products

Evaluation status
Not relevant, explanation provided

Please explain
Unilever sells finished products that do not require further processing. Emissions associated with the use of our products by our consumers are included in the section – use of sold products, therefore there are 0 emissions related to this row.

Use of sold products

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
40,953,112

Emissions calculation methodology
Other, please specify
ISO 14040 series of LCA standards

Percentage of emissions calculated using data obtained from suppliers or value chain partners
50

Please explain
We measure the full GHG footprint of our product portfolio and annual sales using an LCA method compliant with the ISO 14040 standard. We measure the consumer use phase using a combination of primary habits data and on pack recommendations of use combined with life cycle inventory data. We measure approximately 3000 products across 14 countries – this represents around 60-70% of annual sales volume.
According to our analysis, GHG emissions from product use accounts for 67% of our total GHG footprint - by far the largest source of GHG emissions for Unilever. There are also significant risks associated with climate change which can affect product use e.g. water scarcity impacting the use of products which rely on water (such as laundry detergents and shampoos). Higher energy costs can also affect demand for personal and household care products due to the impact on disposable incomes. Taking action to reduce GHG from product use through energy-efficient (e.g low/no hot water use) innovations or improving our packaging is a significant growth opportunity. Our Divisions (which manage over 400 brands and thousands of products) response to climate change has been guided by a review of the areas where we can have the biggest impact on mitigating climate risk or benefiting from climate opportunity.

End of life treatment of sold products

<table>
<thead>
<tr>
<th>Evaluation status</th>
<th>Relevant, calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions in reporting year (metric tons CO2e)</td>
<td>2,234,426</td>
</tr>
<tr>
<td>Emissions calculation methodology</td>
<td>Other, please specify</td>
</tr>
<tr>
<td></td>
<td>ISO 14040 series of LCA standards</td>
</tr>
<tr>
<td>Percentage of emissions calculated using data obtained from suppliers or value chain partners</td>
<td>0</td>
</tr>
<tr>
<td>Please explain</td>
<td>In order to calculate emissions in this category, Unilever used ISO 14040 series of LCA standards. We use life cycle inventory data for processes/activities using sources such as Ecoinvent, IEA energy data and internal data on habits and specifications. The studies are performed/modelled in GaBi software. All data in this category is based on secondary data. As per the emissions calculation methodology, there are 0 emissions related to suppliers or value chain partners for emissions related to End of life treatment of sold products.</td>
</tr>
</tbody>
</table>

Downstream leased assets

<table>
<thead>
<tr>
<th>Evaluation status</th>
<th>Not relevant, explanation provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please explain</td>
<td>The distribution and sale of our products involves various business partners (logistics and retail) as opposed to leased assets. Emissions from downstream activities</td>
</tr>
</tbody>
</table>
associated with our products are reported in the downstream transportation and distributions section and therefore 0 emissions are separately captured against this row.

Franchises

Evaluation status
Not relevant, explanation provided

Please explain
Given the nature of our business, we do not own any franchises so 0 emissions are related to this row.

Investments

Evaluation status
Not relevant, explanation provided

Please explain
Not applicable for a business that sells fast moving consumer goods so 0 emissions are related to this row.

Other (upstream)

Evaluation status
Not relevant, explanation provided

Please explain
Not relevant. Data included in other scope 3 emissions categories so 0 emissions are related to this row.

Other (downstream)

Evaluation status
Not relevant, explanation provided

Please explain
Not relevant. Data included in other scope 3 emissions categories so 0 emissions are related to this row.

C6.5a

(C6.5a) Disclose or restate your Scope 3 emissions data for previous years.

Past year 1

Start date
End date

Scope 3: Purchased goods and services (metric tons CO2e)

Scope 3: Capital goods (metric tons CO2e)

Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)

Scope 3: Upstream transportation and distribution (metric tons CO2e)

Scope 3: Waste generated in operations (metric tons CO2e)

Scope 3: Business travel (metric tons CO2e)

Scope 3: Employee commuting (metric tons CO2e)

Scope 3: Upstream leased assets (metric tons CO2e)

Scope 3: Downstream transportation and distribution (metric tons CO2e)

Scope 3: Processing of sold products (metric tons CO2e)

Scope 3: Use of sold products (metric tons CO2e)

Scope 3: End of life treatment of sold products (metric tons CO2e)

Scope 3: Downstream leased assets (metric tons CO2e)

Scope 3: Franchises (metric tons CO2e)

Scope 3: Investments (metric tons CO2e)

Scope 3: Other (upstream) (metric tons CO2e)
Scope 3: Other (downstream) (metric tons CO2e)

Comment
Only our scope 1 and 2 emissions figure needed to be restated for the prior year.

C6.7

(C6.7) Are carbon dioxide emissions from biogenic carbon relevant to your organization?
Yes

C6.7a

(C6.7a) Provide the emissions from biogenic carbon relevant to your organization in metric tons CO2.

<table>
<thead>
<tr>
<th>CO2 emissions from biogenic carbon (metric tons CO2)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 422,824.57</td>
<td></td>
</tr>
</tbody>
</table>

C-AC6.8/C-FB6.8/C-PF6.8

(C-AC6.8/C-FB6.8/C-PF6.8) Is biogenic carbon pertaining to your direct operations relevant to your current CDP climate change disclosure?
Yes

C-AC6.8a/C-FB6.8a/C-PF6.8a

(C-AC6.8a/C-FB6.8a/C-PF6.8a) Account for biogenic carbon data pertaining to your direct operations and identify any exclusions.

CO2 emissions from land use management

<table>
<thead>
<tr>
<th>Emissions (metric tons CO2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Methodology
Other, please specify
CO2 emissions are managed but not measured and reported separately

Please explain
We apply best management practices to minimise CO2 emissions on our plantations as required under the certification schemes but this does not involve estimation and reporting of CO2 emissions.

CO2 removals from land use management

<table>
<thead>
<tr>
<th>Emissions (metric tons CO2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Methodology

Other, please specify

CO2 emissions are managed but not measured and reported separately

Please explain

We apply best management practices to minimise CO2 emissions on our plantations as required under the certification schemes but this does not involve estimation and reporting of CO2 emissions

Sequestration during land use change

<table>
<thead>
<tr>
<th>Emissions (metric tons CO2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Methodology

Other, please specify

N/A

Please explain

We have long-established plantations with no relevant/recent land use change.

CO2 emissions from biofuel combustion (land machinery)

<table>
<thead>
<tr>
<th>Emissions (metric tons CO2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Methodology

Other, please specify

Aggregated and not reported separately

Please explain

CO2 emissions from biofuels in non-Unilever owned operations are reported, if applicable, in our aggregated scope 3 product life cycle emissions that are reported on the basis of sales in 14 countries representing approximately 60-70% of our total annual sales volume.

CO2 emissions from biofuel combustion (processing/manufacturing machinery)

<table>
<thead>
<tr>
<th>Emissions (metric tons CO2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>422,824.57</td>
</tr>
</tbody>
</table>

Methodology

Default emissions factors

Please explain

These emissions relate to biogenic fuels such as biomass, wood/wood waste, liquid biofuels, fuel crops and biogas used as fuels within our manufacturing operations. A high proportion of our products contain at least one ingredient derived from agriculture/forestry, hence we are reporting all emissions from biofuels used in our manufacturing operations.
CO2 emissions from biofuel combustion (other)

Emissions (metric tons CO2)
0

Methodology
Other, please specify
Aggregated and not reported separately

Please explain
CO2 emissions from biofuels in non-Unilever owned operations are reported, if applicable, in our aggregated scope 3 product life cycle emissions that are reported on the basis of sales in 14 countries representing approximately 60-70% of our total annual sales volume.

C-AC6.9/C-FB6.9/C-PF6.9

(C-AC6.9/C-FB6.9/C-PF6.9) Do you collect or calculate greenhouse gas emissions for each commodity reported as significant to your business in C-AC0.7/FB0.7/PF0.7?

Agricultural commodities
Palm Oil

Do you collect or calculate GHG emissions for this commodity?
Yes

Please explain
Our GHG emissions for palm includes processing of palm oil and palm kernel oil as well as palm oil derivatives such as palm based surfactants and soaps. The figures provided are derived from our annual product footprint data which covers approximately 60-70% of sales volume and is not calculated volume and is not from purchasing volumes. The numbers are calculated using an internationally agreed approach - using a life cycle assessment method compliant with the ISO 14040 standard. We measure approximately 3000 products across 14 countries.

Agricultural commodities
Soy

Do you collect or calculate GHG emissions for this commodity?
Yes

Please explain
Our GHG emissions for soy includes processing and soy derivatives such as soy oils. The figures provided are derived from our annual product footprint data which covers approximately 60-70% of sales volume and is not calculated volume and is not from purchasing volumes. The numbers are calculated using an internationally agreed
approach - using a life cycle assessment method compliant with the ISO 14040 standard. We measure approximately 3000 products across 14 countries

Agricultural commodities
Timber

Do you collect or calculate GHG emissions for this commodity?
Yes

Please explain
We do not have data in an easy extractable format for paper and board.

Agricultural commodities
Other
Cocoa

Do you collect or calculate GHG emissions for this commodity?
Yes

Please explain
Based on purchase volumes of cocoa and industry average GHG emission factor for cocoa.

C-AC6.9a/C-FB6.9a/C-PF6.9a

(C-AC6.9a/C-FB6.9a/C-PF6.9a) Report your greenhouse gas emissions figure(s) for your disclosing commodity(ies), explain your methodology, and include any exclusions.

Palm Oil

Reporting emissions by
Total

Emissions (metric tons CO2e)
3,158,571

Change from last reporting year
Higher

Please explain
The total volume of palm materials increased from the previous year. Almost all of the palm oil is sustainable sourced and has a lower GHG impact than industry average palm.

Soy
Reporting emissions by
Total

Emissions (metric tons CO2e)
393,328

Change from last reporting year
About the same

Please explain
The total volume of soy purchased has increased and the GHG emissions have increased accordingly

Timber

Reporting emissions by
Total

Emissions (metric tons CO2e)
999,563

Change from last reporting year
This is our first year of measurement

Please explain
The emissions from timber products have been estimated based on purchases of paper and board and using an average GHG value for folded box board and corrugated kraft board.

Other

Reporting emissions by
Total

Emissions (metric tons CO2e)
119,706

Change from last reporting year
This is our first year of measurement

Please explain
Based on purchase volumes of cocoa and industry average GHG emission factor for cocoa.

C6.10

(C6.10) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.
Intensity figure
0.0000135524

Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)
710,739.88

Metric denominator
unit total revenue

Metric denominator: Unit total
52,444,000,000

Scope 2 figure used
Market-based

% change from previous year
11.72

Direction of change
Decreased

Reason for change
The decrease is the result of a reduction in energy use per tonne of production including emissions reduction initiatives and increased use of renewable energy. These include: (1) improved machine efficiencies (9%); (2) the introduction of newer technologies through capital investment (1%); (3) an increase in the use of renewable fuels (82%); (4) better recycling of waste heat for preheating etc (8%). This reduction in emissions intensity is consistent with Unilever’s overall strategy to achieve zero scope 1 & 2 emissions by 2030. The change in this intensity measure between 2020 and 2021 is presented on a like-for-like basis.

Intensity figure
0.0371597324

Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)
710,739.88

Metric denominator
metric ton of product

Metric denominator: Unit total
19,126,614.51

Scope 2 figure used
Market-based

% change from previous year

88
7.32

Direction of change
Decreased

Reason for change
In November 2015 we announced a target to reduce scope 1+2 emissions to zero by 2030, alongside use of 100% renewable electricity in our operations by 2020, which has been approved as a science-based target. In 2021, we achieved an annual total emissions reduction of 7% per metric tonne, with scope 1 and scope 2 decreasing by 7% and 16% respectively, from the combined effect of a reduction in energy use per tonne of production including emissions reduction initiatives and increased use of renewable energy. These include: (1) improved machine efficiencies (9%); (2) the introduction of newer technologies through capital investment (1%); (3) an increase in the use of renewable fuels (82%); (4) better recycling of waste heat for preheating etc (8%). The change in this intensity measure between 2020 and 2021 is presented on a like-for-like basis.

C7. Emissions breakdowns

C7.1

(C7.1) Does your organization break down its Scope 1 emissions by greenhouse gas type?
Yes

C7.1a

(C7.1a) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used greenhouse warming potential (GWP).

<table>
<thead>
<tr>
<th>Greenhouse gas</th>
<th>Scope 1 emissions (metric tons of CO2e)</th>
<th>GWP Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>542,619.4</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>HFCs</td>
<td>23,368.343</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
</tbody>
</table>

C7.2

(C7.2) Break down your total gross global Scope 1 emissions by country/region.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>2,505</td>
</tr>
<tr>
<td>Argentina</td>
<td>27,392.3</td>
</tr>
<tr>
<td>Country</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Australia</td>
<td>5,961.3</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>20,241.1</td>
</tr>
<tr>
<td>Belgium</td>
<td>17.5</td>
</tr>
<tr>
<td>Bolivia (Plurinational State of)</td>
<td>1,980.1</td>
</tr>
<tr>
<td>Brazil</td>
<td>52,108.2</td>
</tr>
<tr>
<td>Canada</td>
<td>4,888.7</td>
</tr>
<tr>
<td>Chile</td>
<td>190.6</td>
</tr>
<tr>
<td>China</td>
<td>6,519</td>
</tr>
<tr>
<td>Colombia</td>
<td>10,424.2</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>3,437.3</td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>2,367</td>
</tr>
<tr>
<td>Cyprus</td>
<td>168.4</td>
</tr>
<tr>
<td>Czechia</td>
<td>10.4</td>
</tr>
<tr>
<td>Denmark</td>
<td>0</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>0</td>
</tr>
<tr>
<td>Ecuador</td>
<td>7,899</td>
</tr>
<tr>
<td>Egypt</td>
<td>6,060.4</td>
</tr>
<tr>
<td>El Salvador</td>
<td>6,912.3</td>
</tr>
<tr>
<td>France</td>
<td>12,384.2</td>
</tr>
<tr>
<td>Germany</td>
<td>16,172.2</td>
</tr>
<tr>
<td>Ghana</td>
<td>3,364.7</td>
</tr>
<tr>
<td>Greece</td>
<td>1,661.2</td>
</tr>
<tr>
<td>Honduras</td>
<td>0</td>
</tr>
<tr>
<td>Hungary</td>
<td>6,259.5</td>
</tr>
<tr>
<td>India</td>
<td>46,532.1</td>
</tr>
<tr>
<td>Indonesia</td>
<td>24,638.7</td>
</tr>
<tr>
<td>Iran (Islamic Republic of)</td>
<td>837.1</td>
</tr>
<tr>
<td>Ireland</td>
<td>0</td>
</tr>
<tr>
<td>Israel</td>
<td>13,638.2</td>
</tr>
<tr>
<td>Italy</td>
<td>18,942.3</td>
</tr>
<tr>
<td>Japan</td>
<td>11.7</td>
</tr>
<tr>
<td>Kenya</td>
<td>5,915.3</td>
</tr>
<tr>
<td>Lithuania</td>
<td>528.5</td>
</tr>
<tr>
<td>Malaysia</td>
<td>0</td>
</tr>
<tr>
<td>Mexico</td>
<td>14,845.9</td>
</tr>
<tr>
<td>Country</td>
<td>Value</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Morocco</td>
<td>2,318</td>
</tr>
<tr>
<td>Myanmar</td>
<td>254.4</td>
</tr>
<tr>
<td>Nepal</td>
<td>535.2</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2,291.6</td>
</tr>
<tr>
<td>Nigeria</td>
<td>11,331.2</td>
</tr>
<tr>
<td>Pakistan</td>
<td>6,393.9</td>
</tr>
<tr>
<td>Peru</td>
<td>0</td>
</tr>
<tr>
<td>Philippines</td>
<td>6,412.1</td>
</tr>
<tr>
<td>Poland</td>
<td>4,113</td>
</tr>
<tr>
<td>Portugal</td>
<td>9,004.6</td>
</tr>
<tr>
<td>Romania</td>
<td>5,338</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>19,323.5</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>2,178.2</td>
</tr>
<tr>
<td>South Africa</td>
<td>21,187.8</td>
</tr>
<tr>
<td>Spain</td>
<td>11,486.7</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>2,949.4</td>
</tr>
<tr>
<td>Sweden</td>
<td>0</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1,232.7</td>
</tr>
<tr>
<td>Taiwan, China</td>
<td>674.4</td>
</tr>
<tr>
<td>United Republic of Tanzania</td>
<td>218.7</td>
</tr>
<tr>
<td>Thailand</td>
<td>9,432</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>0</td>
</tr>
<tr>
<td>Tunisia</td>
<td>491.2</td>
</tr>
<tr>
<td>Turkey</td>
<td>19,996.3</td>
</tr>
<tr>
<td>Ukraine</td>
<td>121.1</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>1,640.8</td>
</tr>
<tr>
<td>United Kingdom of Great Britain and Northern Ireland</td>
<td>45,851.5</td>
</tr>
<tr>
<td>Uruguay</td>
<td>7.6</td>
</tr>
<tr>
<td>United States of America</td>
<td>53,972</td>
</tr>
<tr>
<td>Venezuela (Bolivarian Republic of)</td>
<td>334.3</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>323.6</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>34.6</td>
</tr>
<tr>
<td>Austria</td>
<td>0</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>1,571.4</td>
</tr>
<tr>
<td>Finland</td>
<td>0</td>
</tr>
</tbody>
</table>
C7.3

(C7.3) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.

By business division

C7.3a

(C7.3a) Break down your total gross global Scope 1 emissions by business division.

<table>
<thead>
<tr>
<th>Business division</th>
<th>Scope 1 emissions (metric ton CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>46,012</td>
</tr>
<tr>
<td>Europe</td>
<td>135,577</td>
</tr>
<tr>
<td>Latin America</td>
<td>125,546</td>
</tr>
<tr>
<td>NAMET & RUB</td>
<td>69,110</td>
</tr>
<tr>
<td>North America</td>
<td>58,861</td>
</tr>
<tr>
<td>North Asia</td>
<td>7,205</td>
</tr>
<tr>
<td>SEAA</td>
<td>47,025</td>
</tr>
<tr>
<td>South Asia</td>
<td>76,652</td>
</tr>
</tbody>
</table>

C-AC7.4/C-FB7.4/C-PF7.4

(C-AC7.4/C-FB7.4/C-PF7.4) Do you include emissions pertaining to your business activity(ies) in your direct operations as part of your global gross Scope 1 figure?

Yes

C-AC7.4a/C-FB7.4a/C-PF7.4a

(C-AC7.4a/C-FB7.4a/C-PF7.4a) Select the form(s) in which you are reporting your agricultural/forestry emissions.

Total emissions

Guatemala 0
Nicaragua 0
Panama 0
Singapore 2.4
Paraguay 14
Uganda 21.6
Uruguay 7.6
C-AC7.4b/C-FB7.4b/C-PF7.4b

(C-AC7.4b/C-FB7.4b/C-PF7.4b) Report the Scope 1 emissions pertaining to your business activity(ies) and explain any exclusions. If applicable, disaggregate your agricultural/forestry by GHG emissions category.

Activity
Processing/Manufacturing

Emissions (metric tons CO2e)
565,988

Methodology
Default emissions factor

Please explain
We’re reporting our total scope 1, as a high proportion of our raw materials across all product categories are derived from agriculture and therefore almost all of our products contain an agriculture-derived ingredient. Method of calculation/tools: Data is collected for all manufacturing/processing activities at the site level. This is aggregated and The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (Revised Edition) is used to calculate our total. Exclusions: none. This figure represents all of our manufacturing/processing activities. We do not have any scope 1 emissions associated with agriculture/forestry or distribution as these are classified under scope 3 for our business.

C7.5

(C7.5) Break down your total gross global Scope 2 emissions by country/region.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>869.5</td>
<td>869.5</td>
</tr>
<tr>
<td>Argentina</td>
<td>21,454.3</td>
<td>21,454.3</td>
</tr>
<tr>
<td>Australia</td>
<td>28,145.3</td>
<td>0</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>388.4</td>
<td>388.4</td>
</tr>
<tr>
<td>Belgium</td>
<td>45.2</td>
<td>0</td>
</tr>
<tr>
<td>Bolivia (Plurinational State of)</td>
<td>1,428.1</td>
<td>1,428.1</td>
</tr>
<tr>
<td>Brazil</td>
<td>19,890.3</td>
<td>0</td>
</tr>
<tr>
<td>Canada</td>
<td>3,889.7</td>
<td>0</td>
</tr>
<tr>
<td>Chile</td>
<td>5,092.6</td>
<td>1,760.455</td>
</tr>
<tr>
<td>China</td>
<td>74,203.5</td>
<td>15,936.63</td>
</tr>
<tr>
<td>Country</td>
<td>CO2 Emissions</td>
<td>Scope 3 Emissions</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Colombia</td>
<td>6,686.6</td>
<td>2,902.69</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>42.1</td>
<td>42.1</td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>1,727.7</td>
<td>1,727.7</td>
</tr>
<tr>
<td>Cyprus</td>
<td>293.4</td>
<td>0</td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>1,727.7</td>
<td>1,727.7</td>
</tr>
<tr>
<td>Cyprus</td>
<td>293.4</td>
<td>0</td>
</tr>
<tr>
<td>Denmark</td>
<td>325.1</td>
<td>0</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Ecuador</td>
<td>4,107.9</td>
<td>4,107.9</td>
</tr>
<tr>
<td>Egypt</td>
<td>9,734.2</td>
<td>0</td>
</tr>
<tr>
<td>El Salvador</td>
<td>1,941.6</td>
<td>1,926.5</td>
</tr>
<tr>
<td>France</td>
<td>5,114.1</td>
<td>0</td>
</tr>
<tr>
<td>Germany</td>
<td>52,780.7</td>
<td>10,066.36</td>
</tr>
<tr>
<td>Ghana</td>
<td>1,124</td>
<td>1,124</td>
</tr>
<tr>
<td>Greece</td>
<td>4,870.6</td>
<td>0</td>
</tr>
<tr>
<td>Honduras</td>
<td>25.5</td>
<td>0</td>
</tr>
<tr>
<td>Hungary</td>
<td>7,457.3</td>
<td>74.47</td>
</tr>
<tr>
<td>India</td>
<td>213,568.2</td>
<td>149,786</td>
</tr>
<tr>
<td>Indonesia</td>
<td>140,806</td>
<td>19,521.614</td>
</tr>
<tr>
<td>Iran (Islamic Republic of)</td>
<td>1,653.8</td>
<td>1,653.8</td>
</tr>
<tr>
<td>Ireland</td>
<td>105.8</td>
<td>0</td>
</tr>
<tr>
<td>Israel</td>
<td>22,616.5</td>
<td>304.204</td>
</tr>
<tr>
<td>Italy</td>
<td>25,089.1</td>
<td>7,982.515</td>
</tr>
<tr>
<td>Japan</td>
<td>2,462.4</td>
<td>0</td>
</tr>
<tr>
<td>Kenya</td>
<td>2,753.5</td>
<td>2,753.5</td>
</tr>
<tr>
<td>Lithuania</td>
<td>424</td>
<td>0</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1,257.5</td>
<td>1,257.5</td>
</tr>
<tr>
<td>Mexico</td>
<td>36,245.5</td>
<td>0</td>
</tr>
<tr>
<td>Morocco</td>
<td>2,037.9</td>
<td>0</td>
</tr>
<tr>
<td>Myanmar</td>
<td>1,700.1</td>
<td>1,700.1</td>
</tr>
<tr>
<td>Nepal</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>11,313.6</td>
<td>0</td>
</tr>
<tr>
<td>Nigeria</td>
<td>1,033.8</td>
<td>0</td>
</tr>
<tr>
<td>Pakistan</td>
<td>15,975.3</td>
<td>2,761.34</td>
</tr>
<tr>
<td>Peru</td>
<td>17.7</td>
<td>17.7</td>
</tr>
<tr>
<td>Philippines</td>
<td>30,909</td>
<td>0</td>
</tr>
<tr>
<td>Country</td>
<td>Year 1 Emissions (Tonnes)</td>
<td>Year 2 Emissions (Tonnes)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Poland</td>
<td>56,578.5</td>
<td>13,758.54</td>
</tr>
<tr>
<td>Portugal</td>
<td>3,158.6</td>
<td>0</td>
</tr>
<tr>
<td>Romania</td>
<td>4,204.9</td>
<td>0</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>27,284</td>
<td>71.61</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>7,043.7</td>
<td>0</td>
</tr>
<tr>
<td>South Africa</td>
<td>75,109</td>
<td>0</td>
</tr>
<tr>
<td>Spain</td>
<td>4,348.3</td>
<td>0</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>7,533.2</td>
<td>7,533.2</td>
</tr>
<tr>
<td>Sweden</td>
<td>3,200</td>
<td>0</td>
</tr>
<tr>
<td>Switzerland</td>
<td>100.1</td>
<td>0</td>
</tr>
<tr>
<td>Taiwan, China</td>
<td>1,792.6</td>
<td>0</td>
</tr>
<tr>
<td>Thailand</td>
<td>30,346.1</td>
<td>2,101.05</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>158.7</td>
<td>158.7</td>
</tr>
<tr>
<td>Tunisia</td>
<td>725</td>
<td>725</td>
</tr>
<tr>
<td>Turkey</td>
<td>45,697.8</td>
<td>3,274.128</td>
</tr>
<tr>
<td>Ukraine</td>
<td>354.9</td>
<td>354.9</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>10,926.3</td>
<td>0</td>
</tr>
<tr>
<td>United Kingdom of Great Britain and Northern Ireland</td>
<td>30,140.8</td>
<td>0</td>
</tr>
<tr>
<td>Uruguay</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>United States of America</td>
<td>158,561</td>
<td>10,485.44</td>
</tr>
<tr>
<td>Venezuela (Bolivarian Republic of)</td>
<td>1,780.3</td>
<td>1,780.3</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>12,288.6</td>
<td>0</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>471.1</td>
<td>471.1</td>
</tr>
<tr>
<td>Austria</td>
<td>22.7</td>
<td>0</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Finland</td>
<td>661.9</td>
<td>91.977</td>
</tr>
<tr>
<td>Guatemala</td>
<td>31.3</td>
<td>0</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>57.9</td>
<td>57.9</td>
</tr>
<tr>
<td>Panama</td>
<td>33</td>
<td>8.241</td>
</tr>
<tr>
<td>Singapore</td>
<td>229.3</td>
<td>229.3</td>
</tr>
<tr>
<td>Paraguay</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>United Republic of Tanzania</td>
<td>1,729.1</td>
<td>1,729.1</td>
</tr>
<tr>
<td>Uganda</td>
<td>0.8</td>
<td>0.167</td>
</tr>
</tbody>
</table>
C7.6

(C7.6) Indicate which gross global Scope 2 emissions breakdowns you are able to provide.

By business division

C7.6a

(C7.6a) Break down your total gross global Scope 2 emissions by business division.

<table>
<thead>
<tr>
<th>Business division</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>128,943.55</td>
<td>7,253.13</td>
</tr>
<tr>
<td>Europe</td>
<td>208,461.02</td>
<td>31,973.88</td>
</tr>
<tr>
<td>Latin America</td>
<td>162,460.77</td>
<td>10,485.44</td>
</tr>
<tr>
<td>NAMET & RUB</td>
<td>83,948.94</td>
<td>7,805.58</td>
</tr>
<tr>
<td>North America</td>
<td>78,539.84</td>
<td>15,936.63</td>
</tr>
<tr>
<td>North Asia</td>
<td>237,465.14</td>
<td>10,832.75</td>
</tr>
<tr>
<td>SEAA</td>
<td>245,681.9</td>
<td>24,809.56</td>
</tr>
<tr>
<td>South Asia</td>
<td>99,003.53</td>
<td>36,655.2</td>
</tr>
</tbody>
</table>

C7.9

(C7.9) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?

Decreased

C7.9a

(C7.9a) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.

<table>
<thead>
<tr>
<th>Change in renewable energy consumption</th>
<th>Change in emissions (metric tons CO2e)</th>
<th>Direction of change</th>
<th>Emissions value (percentage)</th>
<th>Please explain calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in renewable energy consumption</td>
<td>67,705</td>
<td>Decreased</td>
<td>8.2</td>
<td>Removal of direct use of coal reduced S1 emissions by 17,500 tonnes CO2 and sites using renewable energy reduced S1+S2 emissions by 50.205 tonnes CO2, compared to total emissions of 823,511 tonnes CO2 in 2020. This equates to ((67,705/823,511)\times100 = 8.2%) reduction in</td>
</tr>
</tbody>
</table>
S1 + S2 emissions. Examples include: biomass boilers in Brazil and Kenya.

<table>
<thead>
<tr>
<th>Other emissions reduction activities</th>
<th>6,886</th>
<th>Decreased</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific emissions reduction projects, plus general efficiency improvement projects, during 2021 reduced S1 + S2 emissions by 6,886 tonnes CO2 compared to total emissions of 823,511 tonnes CO2 in 2020. This equates to (6,886/823,511)*100 = 0.8% reduction. Examples include: insulation of pipes and tanks, maximising combustion efficiency of boilers and condensate recovery and utilisation of low grade heat that would otherwise be wasted, de-steaming processes in Italy and Israel, solar thermal energy used in Australia.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divestment</th>
<th>30,478</th>
<th>Decreased</th>
<th>3.7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction in emissions of 30,478 tonnes CO2 for sites divested during 2021 or 2020, compared to 823,511 tonnes CO2 reported in 2020. This equates to (30,478/823,511)*100 = 3.7% decrease in Unilever’s S1 + S2 emissions.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acquisitions</th>
<th>12,346</th>
<th>Increased</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional emissions of 12,623 tonnes CO2 from acquired sites reporting for the first time in Unilever’s global Environmental Performance Reporting system in 2021. This equates to (12,623/823,511)*100 = 1.5% increase in Unilever’s S1 + S2 emissions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mergers</th>
<th>0</th>
<th>No change</th>
<th>0</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in output</th>
<th>20,346</th>
<th>Decreased</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased emissions of 20,346 tonnes CO2 due to fall in production volume and product mix changes, as reported by our existing factories in our Environmental Performance Reporting system. This equates to 2.6% decrease in S1 + S2 emissions of 823,511 tonnes CO2 (20,346/823,511)*100 = 2.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in methodology</th>
<th>0</th>
<th>No change</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No change</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in boundary</th>
<th>0</th>
<th>No change</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No change</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in physical</th>
<th>0</th>
<th>No change</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No change</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C7.9b

(C7.9b) Are your emissions performance calculations in C7.9 and C7.9a based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure?

Market-based

C8. Energy

C8.1

(C8.1) What percentage of your total operational spend in the reporting year was on energy?

More than 10% but less than or equal to 15%

C8.2

(C8.2) Select which energy-related activities your organization has undertaken.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Indicate whether your organization undertook this energy-related activity in the reporting year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstocks)</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired steam</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of purchased or acquired cooling</td>
<td>No</td>
</tr>
<tr>
<td>Generation of electricity, heat, steam, or cooling</td>
<td>Yes</td>
</tr>
</tbody>
</table>

C8.2a

(C8.2a) Report your organization’s energy consumption totals (excluding feedstocks) in MWh.
<table>
<thead>
<tr>
<th>Heating value</th>
<th>MWh from renewable sources</th>
<th>MWh from non-renewable sources</th>
<th>Total (renewable and non-renewable) MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstock) LHV (lower heating value)</td>
<td>1,153,681.49</td>
<td>2,557,687.35</td>
<td>3,711,368.85</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td>2,476,819.79</td>
<td>179,722.18</td>
<td>2,656,541.97</td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td>214,586.27</td>
<td>393,632.59</td>
<td>608,218.86</td>
</tr>
<tr>
<td>Consumption of self-generated non-fuel renewable energy</td>
<td>26,352.38</td>
<td></td>
<td>26,352.38</td>
</tr>
<tr>
<td>Total energy consumption</td>
<td>3,871,439.93</td>
<td>3,131,042.13</td>
<td>7,002,482.06</td>
</tr>
</tbody>
</table>

C8.2b

(C8.2b) Select the applications of your organization’s consumption of fuel.

Consumption of fuel for the generation of electricity	No
Consumption of fuel for the generation of heat	Yes
Consumption of fuel for the generation of steam	No
Consumption of fuel for the generation of cooling	No
Consumption of fuel for co-generation or tri-generation	Yes

C8.2c

(C8.2c) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.

Sustainable biomass

Heating value

Unable to confirm heating value
Total fuel MWh consumed by the organization
0

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self-cogeneration or self-trigeneration
0

Comment
Unilever has developed six principles to guide our business in its responsible use of biofuels in our operations. This includes for all biofuels (liquid, solid or gas) derived from biological material such as trees, grass, agricultural waste or organic municipal waste.

The principles are:

1) Unilever will primarily use biofuels as a transition fuel for thermal energy
2) Feedstock for biofuels should not be sourced when there is a material risk that the biogenic material might come from deforested land or converted natural ecosystems
3) Feedstock for biofuels should be sourced locally, and that transcontinental trading and shipping should be avoided
4) Biofuel production should not threaten food security, distort local food prices or create economic hardship for local communities.
5) Any use of biofuels should offer clear greenhouse gas savings across the entire lifecycle
6) If using biological material to produce biofuel prevents more circular uses, we will not choose it as feedstock for biofuel in that region

The Unilever “Sustainable Sourcing of Biofuels guidance” sets out the principles and criteria in detail which have to be applied to all proposed biofuel projects in our own operation. Depending of the feedstock type and its origin certification could be required. There is a stringent governance process in place to ensure that the principles for the sustainable sourcing of biofuels are adhered to.

Other biomass

<table>
<thead>
<tr>
<th>Heating value</th>
<th>LHV</th>
</tr>
</thead>
</table>

Total fuel MWh consumed by the organization
1,153,681.49

MWh fuel consumed for self-generation of heat
1,153,681.49

MWh fuel consumed for self-cogeneration or self-trigeneration
0

Comment
Unilever has developed six principles to guide our business in its responsible use of biofuels in our operations. This includes for all biofuels (liquid, solid or gas) derived from biological material such as trees, grass, agricultural waste or organic municipal waste.

The principles are:

1) Unilever will primarily use biofuels as a transition fuel for thermal energy
2) Feedstock for biofuels should not be sourced when there is a material risk that the biogenic material might come from deforested land or converted natural ecosystems
3) Feedstock for biofuels should be sourced locally, and that transcontinental trading and shipping should be avoided
4) Biofuel production should not threaten food security, distort local food prices or create economic hardship for local communities.
5) Any use of biofuels should offer clear greenhouse gas savings across the entire lifecycle
6) If using biological material to produce biofuel prevents more circular uses, we will not choose it as feedstock for biofuel in that region

The Unilever “Sustainable Sourcing of Biofuels guidance” sets out the principles and criteria in detail which have to be applied to all proposed biofuel projects in our own operation. Depending of the feedstock type and its origin certification could be required. There is a stringent governance process in place to ensure that the principles for the sustainable sourcing of biofuels are adhered to.

Other renewable fuels (e.g. renewable hydrogen)

<table>
<thead>
<tr>
<th>Heating value</th>
<th>Unable to confirm heating value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fuel MWh consumed by the organization</td>
<td>0</td>
</tr>
<tr>
<td>MWh fuel consumed for self-generation of heat</td>
<td>0</td>
</tr>
<tr>
<td>MWh fuel consumed for self- cogeneration or self-trigeneration</td>
<td>0</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
</tbody>
</table>

Coal

<table>
<thead>
<tr>
<th>Heating value</th>
<th>LHV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fuel MWh consumed by the organization</td>
<td>61,392</td>
</tr>
</tbody>
</table>
MWh fuel consumed for self-generation of heat
61,392

MWh fuel consumed for self-cogeneration or self-trigeneration
0

Comment
We aim to transition heating sources (typically fossil-fuel-burning CHP boilers for hot air, water and steam) to renewable energy alternatives. By early 2020, we had stopped using direct coal on-site for thermal energy, except for three factories acquired in 2020 as part of our acquisition of the Horlicks portfolio in India and other predominantly Asian markets. In 2021, we eliminated direct coal from these three factories through the use of biomass and biodiesel. We're exploring options to eliminate indirect coal from steam supplied by third parties by 2030.

Oil

Heating value

Total fuel MWh consumed by the organization
259,593.2

MWh fuel consumed for self-generation of heat
259,593.2

MWh fuel consumed for self-cogeneration or self-trigeneration
0

Comment
This value represents Unilever's diesel consumption.

Gas

Heating value
LHV

Total fuel MWh consumed by the organization
2,142,161.91

MWh fuel consumed for self-generation of heat
2,142,161.91

MWh fuel consumed for self-cogeneration or self-trigeneration
94,540.24

Comment

Other non-renewable fuels (e.g. non-renewable hydrogen)
Heating value
Unable to confirm heating value

Total fuel MWh consumed by the organization
0

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self- cogeneration or self-trigeneration
0

Comment

Total fuel

<table>
<thead>
<tr>
<th>Heating value</th>
<th>LHV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fuel MWh consumed by the organization</td>
<td>3,616,828.6</td>
</tr>
<tr>
<td>MWh fuel consumed for self-generation of heat</td>
<td>3,616,828.6</td>
</tr>
<tr>
<td>MWh fuel consumed for self- cogeneration or self-trigeneration</td>
<td>94,540.24</td>
</tr>
</tbody>
</table>

Comment

C8.2d

(C8.2d) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.

<table>
<thead>
<tr>
<th></th>
<th>Total Gross generation (MWh)</th>
<th>Generation that is consumed by the organization (MWh)</th>
<th>Gross generation from renewable sources (MWh)</th>
<th>Generation from renewable sources that is consumed by the organization (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>120,892.62</td>
<td>95,792.71</td>
<td>26,352.38</td>
<td>19,791.06</td>
</tr>
<tr>
<td>Heat</td>
<td>3,619,122.43</td>
<td>3,605,636.56</td>
<td>1,155,975.32</td>
<td>1,155,753.54</td>
</tr>
<tr>
<td>Steam</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cooling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

C8.2g

(C8.2g) Provide a breakdown of your non-fuel energy consumption by country.
Country/area
Algeria

Consumption of electricity (MWh)
1,734

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
1,734

Is this consumption excluded from your RE100 commitment?
No

Country/area
Argentina

Consumption of electricity (MWh)
65,470

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
65,470

Is this consumption excluded from your RE100 commitment?
No

Country/area
Australia

Consumption of electricity (MWh)
39,203

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
39,203

Is this consumption excluded from your RE100 commitment?
No

Country/area
Austria

Consumption of electricity (MWh)
151

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
151

Is this consumption excluded from your RE100 commitment?
No

Country/area
Bangladesh

Consumption of electricity (MWh)
875

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
875

Is this consumption excluded from your RE100 commitment?
No

Country/area
Belgium

Consumption of electricity (MWh)
238

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
238
Is this consumption excluded from your RE100 commitment?
No

Country/area
Bolivia (Plurinational State of)
Consumption of electricity (MWh)
3,563
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
3,563
Is this consumption excluded from your RE100 commitment?
No

Country/area
Brazil
Consumption of electricity (MWh)
191,923
Consumption of heat, steam, and cooling (MWh)
42,269
Total non-fuel energy consumption (MWh) [Auto-calculated]
234,192
Is this consumption excluded from your RE100 commitment?
No

Country/area
Bulgaria
Consumption of electricity (MWh)
2,332
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of electricity (MWh)</th>
<th>Consumption of heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
<th>Is this consumption excluded from your RE100 commitment?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>29,258</td>
<td>0</td>
<td>29,258</td>
<td>No</td>
</tr>
<tr>
<td>Chile</td>
<td>8,126</td>
<td>0</td>
<td>8,126</td>
<td>No</td>
</tr>
<tr>
<td>China</td>
<td>100,489</td>
<td>846</td>
<td>101,335</td>
<td>No</td>
</tr>
</tbody>
</table>
Total non-fuel energy consumption (MWh) [Auto-calculated]

101,335

Is this consumption excluded from your RE100 commitment?
No

Country/area
Colombia

Consumption of electricity (MWh)
24,641

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
24,641

Is this consumption excluded from your RE100 commitment?
No

Country/area
Costa Rica

Consumption of electricity (MWh)
5,566

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
5,566

Is this consumption excluded from your RE100 commitment?
No

Country/area
Côte d'Ivoire

Consumption of electricity (MWh)
5,196

Consumption of heat, steam, and cooling (MWh)
Total non-fuel energy consumption (MWh) [Auto-calculated]

5,196

Is this consumption excluded from your RE100 commitment?
No

Country/area
Cyprus

Consumption of electricity (MWh)
454

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]

454

Is this consumption excluded from your RE100 commitment?
No

Country/area
Czechia

Consumption of electricity (MWh)
89

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]

89

Is this consumption excluded from your RE100 commitment?
No

Country/area
Denmark

Consumption of electricity (MWh)
1,978
Consumption of heat, steam, and cooling (MWh)
467

Total non-fuel energy consumption (MWh) [Auto-calculated]
2,445

Is this consumption excluded from your RE100 commitment?
No

Country/area
Dominican Republic

Consumption of electricity (MWh)
18

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
18

Is this consumption excluded from your RE100 commitment?
No

Country/area
Ecuador

Consumption of electricity (MWh)
21,028

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
21,028

Is this consumption excluded from your RE100 commitment?
No

Country/area
Egypt

Consumption of electricity (MWh)
19,984

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
19,984

Is this consumption excluded from your RE100 commitment?
No

Country/area
El Salvador

Consumption of electricity (MWh)
6,688

Consumption of heat, steam, and cooling (MWh)
1

Total non-fuel energy consumption (MWh) [Auto-calculated]
6,689

Is this consumption excluded from your RE100 commitment?
No

Country/area
Ethiopia

Consumption of electricity (MWh)
3,105

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
3,105

Is this consumption excluded from your RE100 commitment?
No

Country/area
Finland
Consumption of electricity (MWh)
4,974

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
4,974

Is this consumption excluded from your RE100 commitment?
No

Country/area
France

Consumption of electricity (MWh)
87,891

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
87,891

Is this consumption excluded from your RE100 commitment?
No

Country/area
Germany

Consumption of electricity (MWh)
106,058

Consumption of heat, steam, and cooling (MWh)
10,440

Total non-fuel energy consumption (MWh) [Auto-calculated]
116,498

Is this consumption excluded from your RE100 commitment?
No

Country/area
Ghana

Consumption of electricity (MWh)
5,614

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
5,614

Is this consumption excluded from your RE100 commitment?
No

Country/area
Greece

Consumption of electricity (MWh)
9,395

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
9,395

Is this consumption excluded from your RE100 commitment?
No

Country/area
Guatemala

Consumption of electricity (MWh)
88

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
88

Is this consumption excluded from your RE100 commitment?
No
Country/area
Honduras

Consumption of electricity (MWh)
84

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
84

Is this consumption excluded from your RE100 commitment?
No

Country/area
Hong Kong SAR, China

Consumption of electricity (MWh)
111

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
111

Is this consumption excluded from your RE100 commitment?
No

Country/area
Hungary

Consumption of electricity (MWh)
28,908

Consumption of heat, steam, and cooling (MWh)
15

Total non-fuel energy consumption (MWh) [Auto-calculated]
28,923

Is this consumption excluded from your RE100 commitment?
No
Country/Area

India

Consumption of electricity (MWh)
296,740

Consumption of heat, steam, and cooling (MWh)
231

Total non-fuel energy consumption (MWh) [Auto-calculated]
296,971

Is this consumption excluded from your RE100 commitment?
No

Indonesia

Consumption of electricity (MWh)
200,028

Consumption of heat, steam, and cooling (MWh)
68,674

Total non-fuel energy consumption (MWh) [Auto-calculated]
268,702

Is this consumption excluded from your RE100 commitment?
No

Iran (Islamic Republic of)

Consumption of electricity (MWh)
3,143

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
3,143

Is this consumption excluded from your RE100 commitment?
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of electricity (MWh)</th>
<th>Consumption of heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
<th>Is this consumption excluded from your RE100 commitment?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland</td>
<td>310</td>
<td>185</td>
<td>495</td>
<td>No</td>
</tr>
<tr>
<td>Israel</td>
<td>44,482</td>
<td>0</td>
<td>44,482</td>
<td>No</td>
</tr>
<tr>
<td>Italy</td>
<td>49,223</td>
<td>0</td>
<td>49,223</td>
<td></td>
</tr>
</tbody>
</table>
Is this consumption excluded from your RE100 commitment?
No

Country/area
Japan
Consumption of electricity (MWh)
4,873
Consumption of heat, steam, and cooling (MWh)
3,751
Total non-fuel energy consumption (MWh) [Auto-calculated]
8,624
Is this consumption excluded from your RE100 commitment?
No

Country/area
Kenya
Consumption of electricity (MWh)
27,361
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
27,361
Is this consumption excluded from your RE100 commitment?
No

Country/area
Lithuania
Consumption of electricity (MWh)
6,046
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Malaysia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of electricity (MWh)</td>
<td>1,914</td>
</tr>
<tr>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>1,914</td>
</tr>
<tr>
<td>Is this consumption excluded from your RE100 commitment?</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area</th>
<th>Mexico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of electricity (MWh)</td>
<td>78,734</td>
</tr>
<tr>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>43</td>
</tr>
<tr>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>78,777</td>
</tr>
<tr>
<td>Is this consumption excluded from your RE100 commitment?</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area</th>
<th>Morocco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of electricity (MWh)</td>
<td>3,149</td>
</tr>
<tr>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>0</td>
</tr>
</tbody>
</table>
Total non-fuel energy consumption (MWh) [Auto-calculated]

3,149

Is this consumption excluded from your RE100 commitment?
No

Country/area
Myanmar
Consumption of electricity (MWh)
4,797
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
4,797
Is this consumption excluded from your RE100 commitment?
No

Country/area
Nepal
Consumption of electricity (MWh)
2,192
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
2,192
Is this consumption excluded from your RE100 commitment?
No

Country/area
Netherlands
Consumption of electricity (MWh)
27,437
Consumption of heat, steam, and cooling (MWh)
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of electricity (MWh)</th>
<th>Consumption of heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
<th>Is this consumption excluded from your RE100 commitment?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicaragua</td>
<td>196</td>
<td>0</td>
<td>196</td>
<td>No</td>
</tr>
<tr>
<td>Nigeria</td>
<td>2,533</td>
<td>0</td>
<td>2,533</td>
<td>No</td>
</tr>
<tr>
<td>Pakistan</td>
<td>41,961</td>
<td>0</td>
<td>41,961</td>
<td>No</td>
</tr>
</tbody>
</table>
Consumption of heat, steam, and cooling (MWh)
36,832

Total non-fuel energy consumption (MWh) [Auto-calculated]
78,793

Is this consumption excluded from your RE100 commitment?
No

Country/area
Panama

Consumption of electricity (MWh)
187

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
187

Is this consumption excluded from your RE100 commitment?
No

Country/area
Paraguay

Consumption of electricity (MWh)
689

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
689

Is this consumption excluded from your RE100 commitment?
No

Country/area
Peru

Consumption of electricity (MWh)
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of electricity (MWh)</th>
<th>Consumption of heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
<th>Is this consumption excluded from your RE100 commitment?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippines</td>
<td>44,674</td>
<td>0</td>
<td>44,674</td>
<td>No</td>
</tr>
<tr>
<td>Poland</td>
<td>60,575</td>
<td>7,355</td>
<td>67,930</td>
<td>No</td>
</tr>
<tr>
<td>Romania</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consumption of electricity (MWh)
12,525

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
12,525

Is this consumption excluded from your RE100 commitment?
No

Country/area
Russian Federation

Consumption of electricity (MWh)
76,896

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
76,896

Is this consumption excluded from your RE100 commitment?
No

Country/area
Saudi Arabia

Consumption of electricity (MWh)
13,336

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
13,336

Is this consumption excluded from your RE100 commitment?
No
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of electricity (MWh)</th>
<th>Consumption of heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
<th>Is this consumption excluded from your RE100 commitment?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singapore</td>
<td>589</td>
<td>0</td>
<td>589</td>
<td>No</td>
</tr>
<tr>
<td>South Africa</td>
<td>85,128</td>
<td>11,655</td>
<td>96,783</td>
<td>No</td>
</tr>
<tr>
<td>Spain</td>
<td>11,942</td>
<td>0</td>
<td>11,942</td>
<td>No</td>
</tr>
</tbody>
</table>
Country/area
 Sri Lanka
Consumption of electricity (MWh)
 13,780
Consumption of heat, steam, and cooling (MWh)
 36,829
Total non-fuel energy consumption (MWh) [Auto-calculated]
 50,609
Is this consumption excluded from your RE100 commitment?
 No

Country/area
 Sweden
Consumption of electricity (MWh)
 24,323
Consumption of heat, steam, and cooling (MWh)
 0
Total non-fuel energy consumption (MWh) [Auto-calculated]
 24,323
Is this consumption excluded from your RE100 commitment?
 No

Country/area
 Switzerland
Consumption of electricity (MWh)
 3,781
Consumption of heat, steam, and cooling (MWh)
 0
Total non-fuel energy consumption (MWh) [Auto-calculated]
 3,781
Is this consumption excluded from your RE100 commitment?
 No
Country/area
Taiwan, China

Consumption of electricity (MWh)
3,189

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
3,189

Is this consumption excluded from your RE100 commitment?
No

Country/area
United Republic of Tanzania

Consumption of electricity (MWh)
5,405

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
5,405

Is this consumption excluded from your RE100 commitment?
No

Country/area
Thailand

Consumption of electricity (MWh)
87,016

Consumption of heat, steam, and cooling (MWh)
986

Total non-fuel energy consumption (MWh) [Auto-calculated]
88,002

Is this consumption excluded from your RE100 commitment?
Country/area
 Trinidad and Tobago
Consumption of electricity (MWh)
 302
Consumption of heat, steam, and cooling (MWh)
 0
Total non-fuel energy consumption (MWh) [Auto-calculated]
 302
Is this consumption excluded from your RE100 commitment?
 No

Country/area
 Tunisia
Consumption of electricity (MWh)
 1,694
Consumption of heat, steam, and cooling (MWh)
 0
Total non-fuel energy consumption (MWh) [Auto-calculated]
 1,694
Is this consumption excluded from your RE100 commitment?
 No

Country/area
 Turkey
Consumption of electricity (MWh)
 91,564
Consumption of heat, steam, and cooling (MWh)
 0
Total non-fuel energy consumption (MWh) [Auto-calculated]
 91,564
Is this consumption excluded from your RE100 commitment?
No

Country/area
Uganda
Consumption of electricity (MWh)
16
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
16
Is this consumption excluded from your RE100 commitment?
No

Country/area
Ukraine
Consumption of electricity (MWh)
944
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
944
Is this consumption excluded from your RE100 commitment?
No

Country/area
United Arab Emirates
Consumption of electricity (MWh)
22,235
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
22,235

Is this consumption excluded from your RE100 commitment?
No

Country/area
United Kingdom of Great Britain and Northern Ireland

Consumption of electricity (MWh)
130,100

Consumption of heat, steam, and cooling (MWh)
7,944

Total non-fuel energy consumption (MWh) [Auto-calculated]
138,044

Is this consumption excluded from your RE100 commitment?
No

Country/area
Uruguay

Consumption of electricity (MWh)
38

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
38

Is this consumption excluded from your RE100 commitment?
No

Country/area
United States of America

Consumption of electricity (MWh)
372,046

Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]

372,046

Is this consumption excluded from your RE100 commitment?
No

Country/area
Venezuela (Bolivarian Republic of)

Consumption of electricity (MWh)
5,671

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
5,671

Is this consumption excluded from your RE100 commitment?
No

Country/area
Viet Nam

Consumption of electricity (MWh)
28,662

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
28,662

Is this consumption excluded from your RE100 commitment?
No

Country/area
Zimbabwe

Consumption of electricity (MWh)
679

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]

679

Is this consumption excluded from your RE100 commitment?

No

C8.2h

(C8.2h) Provide details of your organization’s renewable electricity purchases in the reporting year by country

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Chile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td></td>
</tr>
<tr>
<td>Direct procurement from an offsite grid-connected generator e.g. Power Purchase Agreement (PPA)</td>
<td></td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td></td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>8,125.88</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td></td>
</tr>
<tr>
<td>No instrument used</td>
<td></td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>8,125.88</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td></td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td></td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td></td>
</tr>
<tr>
<td>No brand, label, or certification</td>
<td></td>
</tr>
</tbody>
</table>
Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Colombia

Sourcing method
Direct procurement from an offsite grid-connected generator e.g. Power Purchase Agreement (PPA)

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
24,373.89

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
24,640.79

Country/area of origin (generation) of the renewable electricity/attribute consumed
Colombia

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase

Comment
Contract does not specify attribute.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Mexico
Sourcing method
Direct procurement from an offsite grid-connected generator e.g. Power Purchase Agreement (PPA)

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
54,582.88

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
78,734.06

Country/area of origin (generation) of the renewable electricity/attribute consumed
Mexico

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2021

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Contract does not specify attribute.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Philippines

Sourcing method
Direct procurement from an offsite grid-connected generator e.g. Power Purchase Agreement (PPA)

Renewable electricity technology type
Geothermal
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
44,674.05

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
44,674.05

Country/area of origin (generation) of the renewable electricity/attribute consumed
Philippines

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
India

Sourcing method
Direct procurement from an offsite grid-connected generator e.g. Power Purchase Agreement (PPA)

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
11,430.71

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
296,739.5
Country/area of origin (generation) of the renewable electricity/attribute consumed
 India

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
 2021

Brand, label, or certification of the renewable electricity purchase
 No brand, label, or certification

Comment
 Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
 Kenya

Sourcing method
 Direct line to an off-site generator owned by a third party with no grid transfers

Renewable electricity technology type
 Renewable electricity mix, please specify
 primarily hydro and solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
 820.67

Tracking instrument used
 No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
 17,242.64

Country/area of origin (generation) of the renewable electricity/attribute consumed
 Kenya

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
 2021
Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
On site PPA Procured from producer

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Commissioning year:
Kerenga Hydro- 1938
Chemosit hydro- 1928
Jamji hydro- 1928 & 1949
Tagabi hydro- 1989 & 2011
Jamji Solar- 2019

Country/area of renewable electricity consumption
United Republic of Tanzania

Sourcing method
Direct line to an off-site generator owned by a third party with no grid transfers

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
38.79

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
5,405.37

Country/area of origin (generation) of the renewable electricity/attribute consumed
United Republic of Tanzania

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
On site PPA Procured from producer

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
El Salvador

Sourcing method
Direct line to an off-site generator owned by a third party with no grid transfers

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
89.34

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
6,687.76

Country/area of origin (generation) of the renewable electricity/attribute consumed
El Salvador

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
On site PPA Procured from producer

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.
Country/area of renewable electricity consumption
China

Sourcing method
Direct line to an off-site generator owned by a third party with no grid transfers

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
5,344.97

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
100,489.42

Country/area of origin (generation) of the renewable electricity/attribute consumed
China

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2021

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
On site PPA Procured from producer

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
India

Sourcing method
Purchase from an on-site installation owned by a third party

Renewable electricity technology type
Solar
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
1,959.41

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
296,739.5

Country/area of origin (generation) of the renewable electricity/attribute consumed
India

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
On site PPA Procured from producer

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Austria

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
151.21

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
Country/area of origin (generation) of the renewable electricity/attribute consumed
Austria

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Belgium

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
238.3

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
238.3

Country/area of origin (generation) of the renewable electricity/attribute consumed
Belgium

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Denmark

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
1,977.82

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
1,977.82

Country/area of origin (generation) of the renewable electricity/attribute consumed
Denmark

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Finland

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
4,974.24

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
4,974.24

Country/area of origin (generation) of the renewable electricity/attribute consumed
Finland

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
France

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Renewable electricity mix, please specify
Hydropower / wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
70,695.35

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
87,890.82

Country/area of origin (generation) of the renewable electricity/attribute consumed
France

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Germany

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
106,058.18

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
106,058.18

Country/area of origin (generation) of the renewable electricity/attribute consumed
Germany

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Italy

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Sustainable Biomass

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
8,058.44

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
49,222.87

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification
Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Netherlands

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
22,966.85

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
27,437.16

Country/area of origin (generation) of the renewable electricity/attribute consumed
Netherlands

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Poland

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)
Renewable electricity technology type
Sustainable Biomass

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
60,574.84

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
60,574.84

Country/area of origin (generation) of the renewable electricity/attribute consumed
Poland

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Spain

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Renewable electricity mix, please specify Solar/Hydropower/Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
11,941.86

Tracking instrument used
GO
Total attribute instruments retained for consumption by your organization (MWh)
11,941.86

Country/area of origin (generation) of the renewable electricity/attribute consumed
Spain

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Sweden

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
24,322.59

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
24,322.59

Country/area of origin (generation) of the renewable electricity/attribute consumed
Sweden

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Switzerland

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
3,781.18

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
3,781.18

Country/area of origin (generation) of the renewable electricity/attribute consumed
Switzerland

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.
Country/area of renewable electricity consumption
United Kingdom of Great Britain and Northern Ireland

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
115,132.74

Tracking instrument used
REGO

Total attribute instruments retained for consumption by your organization (MWh)
130,099.9

Country/area of origin (generation) of the renewable electricity/attribute consumed
United Kingdom of Great Britain and Northern Ireland

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Brazil

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
164,875.93

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
191,923.39

Country/area of origin (generation) of the renewable electricity/attribute consumed
Brazil

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Russian Federation

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
75,975.25

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
76,895.95

Country/area of origin (generation) of the renewable electricity/attribute consumed
Russian Federation

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Australia

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Renewable electricity mix, please specify
Solar/Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
33,510.19

Tracking instrument used
Australian LGC

Total attribute instruments retained for consumption by your organization (MWh)
39,202.81

Country/area of origin (generation) of the renewable electricity/attribute consumed
Australia

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Ethiopia

Sourcing method
Default delivered renewable electricity from a grid that is 95% or more renewable and where there is no mechanism for specifically allocating renewable electricity

Renewable electricity technology type
Renewable electricity mix, please specify
hydro, wind, solar, geothermal and biomass

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
3,105.43

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
3,105.43

Country/area of origin (generation) of the renewable electricity/attribute consumed
Ethiopia

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Paraguay

Sourcing method
Default delivered renewable electricity from a grid that is 95% or more renewable and where there is no mechanism for specifically allocating renewable electricity

Renewable electricity technology type
Large hydropower (>25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
688.75

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
688.75

Country/area of origin (generation) of the renewable electricity/attribute consumed
Paraguay

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Nepal

Sourcing method
Default delivered renewable electricity from a grid that is 95% or more renewable and where there is no mechanism for specifically allocating renewable electricity

Renewable electricity technology type
Renewable electricity mix, please specify
Mainly hydropower
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
2,163.22

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
2,163.22

Country/area of origin (generation) of the renewable electricity/attribute consumed
Nepal

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Ghana

Sourcing method
Other, please specify
Renewable On-site self generation

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
788.29

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
5,614.28
Country/area of origin (generation) of the renewable electricity/attribute consumed

Ghana

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2,019

Vintage of the renewable energy/attribute (i.e. year of generation)

2021

Brand, label, or certification of the renewable electricity purchase

No brand, label, or certification

Comment

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption

Nigeria

Sourcing method

Other, please specify

Renewable On-site self generation

Renewable electricity technology type

Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)

4.8

Tracking instrument used

No instrument used

Total attribute instruments retained for consumption by your organization (MWh)

2,533.23

Country/area of origin (generation) of the renewable electricity/attribute consumed

Nigeria

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)

2021
Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
South Africa

Sourcing method
Other, please specify
Renewable On-site self generation

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
1,012.18

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
85,128.47

Country/area of origin (generation) of the renewable electricity/attribute consumed
South Africa

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
France

Sourcing method
Other, please specify
Renewable On-site self generation

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
0.03

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
87,890.82

Country/area of origin (generation) of the renewable electricity/attribute consumed
France

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Greece

Sourcing method
Other, please specify
Renewable On-site self generation

Renewable electricity technology type
Solar
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
428.9

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
9,394.89

Country/area of origin (generation) of the renewable electricity/attribute consumed
Greece

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Netherlands

Sourcing method
Other, please specify
Renewable On-site self generation

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
526.95

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
27,437.16
Country/area of origin (generation) of the renewable electricity/attribute consumed
Netherlands

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Portugal

Sourcing method
Other, please specify
Renewable On-site self generation

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
117.12

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
10,356.5

Country/area of origin (generation) of the renewable electricity/attribute consumed
Netherlands

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021
Brand, label, or certification of the renewable electricity purchase
 No brand, label, or certification

Comment
 Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
 Argentina

Sourcing method
 Other, please specify
 Renewable On-site self generation

Renewable electricity technology type
 Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
 10.43

Tracking instrument used
 No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
 65,469.91

Country/area of origin (generation) of the renewable electricity/attribute consumed
 Argentina

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
 2021

Brand, label, or certification of the renewable electricity purchase
 No brand, label, or certification

Comment
 Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.
Brazil

Sourcing method
- Other, please specify
 - Renewable On-site self generation

Renewable electricity technology type
- Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
- 31.2

Tracking instrument used
- No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
- 191,923.39

Country/area of origin (generation) of the renewable electricity/attribute consumed
- Brazil

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
- 2021

Vintage of the renewable energy/attribute (i.e. year of generation)
- 2021

Brand, label, or certification of the renewable electricity purchase
- No brand, label, or certification

Comment
- Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
- El Salvador

Sourcing method
- Other, please specify
 - Renewable On-site self generation

Renewable electricity technology type
- Solar
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
4.02

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
6,687.76

Country/area of origin (generation) of the renewable electricity/attribute consumed
El Salvador

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Saudi Arabia

Sourcing method
Other, please specify
Renewable On-site self generation

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
21.94

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
13,335.94
Country/area of origin (generation) of the renewable electricity/attribute consumed
 Saudi Arabia

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
 2021

Brand, label, or certification of the renewable electricity purchase
 No brand, label, or certification

Comment
 Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
 Turkey

Sourcing method
 Other, please specify
 Renewable On-site self generation

Renewable electricity technology type
 Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
 98.76

Tracking instrument used
 No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
 91,563.57

Country/area of origin (generation) of the renewable electricity/attribute consumed
 Turkey

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
 2021
<table>
<thead>
<tr>
<th>Brand, label, or certification of the renewable electricity purchase</th>
<th>No brand, label, or certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>United Arab Emirates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Other, please specify</td>
</tr>
<tr>
<td></td>
<td>Renewable On-site self generation</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Solar</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>1,335.72</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>No instrument used</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>22,235.04</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>United Arab Emirates</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td></td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td></td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.</td>
</tr>
</tbody>
</table>

Country/area of renewable electricity consumption
China

Sourcing method
Other, please specify
Renewable On-site self generation

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
360.06

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
100,489.42

Country/area of origin (generation) of the renewable electricity/attribute consumed
China

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Indonesia

Sourcing method
Other, please specify
Renewable On-site self generation

Renewable electricity technology type
Solar
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
247.67

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
200,028.1

Country/area of origin (generation) of the renewable electricity/attribute consumed
Indonesia

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Bangladesh

Sourcing method
Other, please specify
Renewable On-site self generation

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
90.19

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
874.89
Country/area of origin (generation) of the renewable electricity/attribute consumed
 Bangladesh

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
 2021

Brand, label, or certification of the renewable electricity purchase
 No brand, label, or certification

Comment
 Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
 India

Sourcing method
 Other, please specify
 Renewable On-site self generation

Renewable electricity technology type
 Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
 7,123.94

Tracking instrument used
 No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
 296,739.5

Country/area of origin (generation) of the renewable electricity/attribute consumed
 India

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
 2021
Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Pakistan

Sourcing method
Other, please specify
Renewable On-site self generation

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
1,580.45

Tracking instrument used
No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
41,961.15

Country/area of origin (generation) of the renewable electricity/attribute consumed
Pakistan

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Sri Lanka

Sourcing method
- Other, please specify
 - Renewable On-site self generation

Renewable electricity technology type
- Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
- 20.59

Tracking instrument used
- No instrument used

Total attribute instruments retained for consumption by your organization (MWh)
- 13,671.29

Country/area of origin (generation) of the renewable electricity/attribute consumed
- Sri Lanka

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
- Vintage of the renewable energy/attribute (i.e. year of generation)
 - 2021

Brand, label, or certification of the renewable electricity purchase
- No brand, label, or certification

Comment
- Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Côte d'Ivoire

Sourcing method
- Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
- Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
5,195.61

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
5,195.61

Country/area of origin (generation) of the renewable electricity/attribute consumed
Nigeria

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable to provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Ghana

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
4,825.99

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
5,614.28

Country/area of origin (generation) of the renewable electricity/attribute consumed
Nigeria

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Kenya

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
16,421.96

Tracking instrument used
I-REC
Total attribute instruments retained for consumption by your organization (MWh)
17,242.64

Country/area of origin (generation) of the renewable electricity/attribute consumed
Uganda

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Nigeria

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
2,528.44

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
Country/area of origin (generation) of the renewable electricity/attribute consumed

Nigeria

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)

2021

Brand, label, or certification of the renewable electricity purchase

No brand, label, or certification

Comment

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption

South Africa

Sourcing method

Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type

Sustainable Biomass

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)

84,116.29

Tracking instrument used

I-REC

Total attribute instruments retained for consumption by your organization (MWh)

85,128.47

Country/area of origin (generation) of the renewable electricity/attribute consumed

South Africa
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
United Republic of Tanzania

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Sustainable Biomass

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
5,366.58

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
5,405.37

Country/area of origin (generation) of the renewable electricity/attribute consumed
South Africa

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Uganda

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
16.07

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
16.07

Country/area of origin (generation) of the renewable electricity/attribute consumed
Uganda

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021
Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Zimbabwe

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Sustainable Biomass

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
679.02

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
679.02

Country/area of origin (generation) of the renewable electricity/attribute consumed
South Africa

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Bulgaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Hydropower (capacity unknown)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>2,331.79</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>GO</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>2,331.79</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Norway</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td></td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Unbundled EAC bought in an adjacent market</td>
</tr>
</tbody>
</table>
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Cyprus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Hydropower (capacity unknown)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>454.12</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>GO</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>454.12</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Norway</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td></td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Unbundled EAC bought in an adjacent market</td>
</tr>
</tbody>
</table>

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open...
these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
- Czechia

Sourcing method
- Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
- Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
- 89.29

Tracking instrument used
- GO

Total attribute instruments retained for consumption by your organization (MWh)
- 89.29

Country/area of origin (generation) of the renewable electricity/attribute consumed
- Norway

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
- 2021

Vintage of the renewable energy/attribute (i.e. year of generation)
- 2021

Brand, label, or certification of the renewable electricity purchase
- No brand, label, or certification

Comment
- Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual...
commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption

France

Sourcing method

Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type

Renewable electricity mix, please specify

Hydropower/Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)

17,195.44

Tracking instrument used

GO

Total attribute instruments retained for consumption by your organization (MWh)

87,890.82

Country/area of origin (generation) of the renewable electricity/attribute consumed

France

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2021

Vintage of the renewable energy/attribute (i.e. year of generation)

2021

Brand, label, or certification of the renewable electricity purchase

No brand, label, or certification

Comment

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Greece

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
8,965.99

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
9,394.89

Country/area of origin (generation) of the renewable electricity/attribute consumed
Norway

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2021

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.
Country/area of renewable electricity consumption
 Hungary

Sourcing method
 Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
 Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the
reporting year (MWh)
 28,908.1

Tracking instrument used
 GO

Total attribute instruments retained for consumption by your organization
(MWh)
 28,908.1

Country/area of origin (generation) of the renewable electricity/attribute
consumed
 Norway

Commissioning year of the energy generation facility (e.g. date of first
commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
 2021

Brand, label, or certification of the renewable electricity purchase
 No brand, label, or certification

Comment
 Unbundled EAC bought in an adjacent market

 Given the large number of redemption certificates that Unilever receives when
 purchasing renewable electricity, and the time resources required to individually open
 these to extract the required information, we have aggregated volumes at country
 sourcing method level. Therefore for this submission, we are unable provide individual
 commissioning years.

 Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select
 one year in the portal, we select 2021 only to comply with requirements.
Country/area of renewable electricity consumption
Ireland

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
310.24

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
310.24

Country/area of origin (generation) of the renewable electricity/attribute consumed
Norway

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Italy
Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Sustainable Biomass

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
41,164.43

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
49,222.87

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Lithuania

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
6,046.11

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
6,046.11

Country/area of origin (generation) of the renewable electricity/attribute consumed
Lithuania

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2021

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Netherlands

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
3,943.36
Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
27,437.16

Country/area of origin (generation) of the renewable electricity/attribute consumed
Netherlands

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Portugal

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
10,239.38

Tracking instrument used
GO
Total attribute instruments retained for consumption by your organization (MWh)
10,356.5

Country/area of origin (generation) of the renewable electricity/attribute consumed
Portugal

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Romania

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
12,524.69

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
12,524.69
Country/area of origin (generation) of the renewable electricity/attribute consumed
Norway

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
United Kingdom of Great Britain and Northern Ireland

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
14,967.16

Tracking instrument used
REGO

Total attribute instruments retained for consumption by your organization (MWh)
130,099.9

Country/area of origin (generation) of the renewable electricity/attribute consumed
United Kingdom of Great Britain and Northern Ireland

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Argentina

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
65,459.49

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
65,469.91

Country/area of origin (generation) of the renewable electricity/attribute consumed
Brazil

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Bolivia (Plurinational State of)

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
3,562.63

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
3,562.63

Country/area of origin (generation) of the renewable electricity/attribute consumed
Chile

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021
Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Brazil

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
27,016.25

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
191,923.39

Country/area of origin (generation) of the renewable electricity/attribute consumed
Brazil

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification
Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Colombia

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Large hydropower (>25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
266.9

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
24,640.79

Country/area of origin (generation) of the renewable electricity/attribute consumed
Colombia

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.
sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Costa Rica

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Small hydropower (<25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
5,566.29

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
5,566.29

Country/area of origin (generation) of the renewable electricity/attribute consumed
Guatemala

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2021

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Dominican Republic

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Small hydropower (<25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
17.76

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
17.76

Country/area of origin (generation) of the renewable electricity/attribute consumed
Guatemala

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2021

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Ecuador

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Large hydropower (>25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
21,027.99

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
21,027.99

Country/area of origin (generation) of the renewable electricity/attribute consumed
Colombia

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.
Country/area of renewable electricity consumption
El Salvador

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Small hydropower (<25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
6,594.39

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
6,687.76

Country/area of origin (generation) of the renewable electricity/attribute consumed
Guatemala

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.
Country/area of renewable electricity consumption

Guatemala

Sourcing method

Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type

Small hydropower (<25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)

88.14

Tracking instrument used

I-REC

Total attribute instruments retained for consumption by your organization (MWh)

88.14

Country/area of origin (generation) of the renewable electricity/attribute consumed

Guatemala

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2021

Brand, label, or certification of the renewable electricity purchase

No brand, label, or certification

Comment

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption

Honduras

Sourcing method

Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
83.56

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
83.56

Country/area of origin (generation) of the renewable electricity/attribute consumed
Honduras

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Mexico

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Wind
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
24,151.19

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
78,734.06

Country/area of origin (generation) of the renewable electricity/attribute consumed
Mexico

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Nicaragua

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
195.71
Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
195.71

Country/area of origin (generation) of the renewable electricity/attribute consumed
Honduras

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2021

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Panama

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Large hydropower (>25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
186.18

Tracking instrument used
I-REC
Total attribute instruments retained for consumption by your organization (MWh)
186.56

Country/area of origin (generation) of the renewable electricity/attribute consumed
Panama

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Peru

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
87.08

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
Country/area of origin (generation) of the renewable electricity/attribute consumed
Brazil

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Trinidad and Tobago

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Small hydropower (<25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
301.71

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
301.71
Country/area of origin (generation) of the renewable electricity/attribute consumed
Guatemala

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Uruguay

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
37.79

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
37.79

Country/area of origin (generation) of the renewable electricity/attribute consumed
Brazil

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Venezuela (Bolivarian Republic of)

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Large hydropower (>25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
5,671.45

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
5,671.45

Country/area of origin (generation) of the renewable electricity/attribute consumed
Colombia
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Algeria

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
1,733.8

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
1,733.8

Country/area of origin (generation) of the renewable electricity/attribute consumed
Morocco

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable to provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Egypt

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
19,983.98

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
19,983.98

Country/area of origin (generation) of the renewable electricity/attribute consumed
Egypt

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Iran (Islamic Republic of)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Hydropower (capacity unknown)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>3,143.06</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>I-REC</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>3,143.06</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Turkey</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td></td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
</tbody>
</table>
Comment

Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Israel

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
44,482.11

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
44,482.11

Country/area of origin (generation) of the renewable electricity/attribute consumed
Israel

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable to provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Morocco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Wind</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>3,148.51</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>I-REC</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>3,148.51</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Morocco</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2021</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable to provide individual</td>
</tr>
</tbody>
</table>
commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Russian Federation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Hydropower (capacity unknown)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>204.38</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>I-REC</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>76,895.95</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td></td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.</td>
<td></td>
</tr>
</tbody>
</table>

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.
Country/area of renewable electricity consumption
 Russian Federation

Sourcing method
 Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
 Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
 716.33

Tracking instrument used
 I-REC

Total attribute instruments retained for consumption by your organization (MWh)
 76,895.95

Country/area of origin (generation) of the renewable electricity/attribute consumed
 Russian Federation

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

 Vintage of the renewable energy/attribute (i.e. year of generation)
 2021

Brand, label, or certification of the renewable electricity purchase
 No brand, label, or certification

Comment
 Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

 Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
 Saudi Arabia
Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
13,313.99

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
13,335.94

Country/area of origin (generation) of the renewable electricity/attribute consumed
United Arab Emirates

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Expected redemption for origin confirmation

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Tunisia

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
1,693.73
Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
1,693.73

Country/area of origin (generation) of the renewable electricity/attribute consumed
Morocco

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2021

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Turkey

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
91,464.82

Tracking instrument used
I-REC
Total attribute instruments retained for consumption by your organization (MWh)
91,563.57

Country/area of origin (generation) of the renewable electricity/attribute consumed
Turkey

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Ukraine

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
943.93

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
943.93
Country/area of origin (generation) of the renewable electricity/attribute consumed
Norway

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
United Arab Emirates

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
20,899.32

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
22,235.04

Country/area of origin (generation) of the renewable electricity/attribute consumed
United Arab Emirates

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Canada

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Renewable electricity mix, please specify
Hydropower/Solar/Wind/Biomass

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
29,258.08

Tracking instrument used
US-REC

Total attribute instruments retained for consumption by your organization (MWh)
29,258.08

Country/area of origin (generation) of the renewable electricity/attribute consumed
Canada

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
Green-e

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
United States of America

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Renewable electricity mix, please specify
Hydropower/Solar/Wind/Biomass

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
372,045.63

Tracking instrument used
US-REC

Total attribute instruments retained for consumption by your organization (MWh)
372,045.63

Country/area of origin (generation) of the renewable electricity/attribute consumed
United States of America

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021
Brand, label, or certification of the renewable electricity purchase
 Green-e

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
 China

Sourcing method
 Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
 Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
 94,784.39

Tracking instrument used
 I-REC

Total attribute instruments retained for consumption by your organization (MWh)
 100,489.42

Country/area of origin (generation) of the renewable electricity/attribute consumed
 China

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
 2021

Brand, label, or certification of the renewable electricity purchase
 No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
- Hong Kong SAR, China

Sourcing method
- Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
- Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
- 110.84

Tracking instrument used
- I-REC

Total attribute instruments retained for consumption by your organization (MWh)
- 110.84

Country/area of origin (generation) of the renewable electricity/attribute consumed
- China

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
- 2021

Vintage of the renewable energy/attribute (i.e. year of generation)
- 2021

Brand, label, or certification of the renewable electricity purchase
- No brand, label, or certification

Comment
- Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual
commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Japan

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Renewable electricity mix, please specify
Hydropower/Solar/Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
4,873.08

Tracking instrument used
J-Credit

Total attribute instruments retained for consumption by your organization (MWh)
4,873.08

Country/area of origin (generation) of the renewable electricity/attribute consumed
Japan

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.
Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Taiwan, China

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
3,188.83

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
3,188.83

Country/area of origin (generation) of the renewable electricity/attribute consumed
Taiwan, China

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.
Country/area of renewable electricity consumption
Australia

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the
reporting year (MWh)
5,692.62

Tracking instrument used
Australian LGC

Total attribute instruments retained for consumption by your organization (MWh)
39,202.81

Country/area of origin (generation) of the renewable electricity/attribute consumed
Australia

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Indonesia

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
199,780.43

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
200,028.1

Country/area of origin (generation) of the renewable electricity/attribute consumed
Indonesia

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Malaysia

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Small hydropower (<25 MW)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
1,914.28

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
1,914.28

Country/area of origin (generation) of the renewable electricity/attribute consumed
Viet Nam

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2021

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Myanmar

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Small hydropower (<25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
4,796.89

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
4,796.89

Country/area of origin (generation) of the renewable electricity/attribute consumed
Viet Nam

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2021

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Singapore

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Small hydropower (<25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
588.73

Tracking instrument used
<table>
<thead>
<tr>
<th>I-REC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
</tr>
<tr>
<td>588.73</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
</tr>
<tr>
<td>Viet Nam</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
</tr>
<tr>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
</tr>
<tr>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
</tr>
<tr>
<td>Unbundled EAC bought in an adjacent market</td>
</tr>
<tr>
<td>Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable to provide individual commissioning years.</td>
</tr>
<tr>
<td>Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.</td>
</tr>
</tbody>
</table>

Country/area of renewable electricity consumption
Thailand

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
87,015.86

Tracking instrument used
I-REC
Total attribute instruments retained for consumption by your organization (MWh)
87,015.86

Country/area of origin (generation) of the renewable electricity/attribute consumed
Thailand

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Viet Nam

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Small hydropower (<25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
28,662.33

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
28,662.33
Country/area of origin (generation) of the renewable electricity/attribute consumed
Viet Nam

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Bangladesh

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
784.7

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
874.89

Country/area of origin (generation) of the renewable electricity/attribute consumed
India
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
India

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Large hydropower (>25 MW)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
276,225.44

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
296,739.5

Country/area of origin (generation) of the renewable electricity/attribute consumed
India

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Pakistan

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
40,380.7

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
41,961.15

Country/area of origin (generation) of the renewable electricity/attribute consumed
Pakistan

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021
Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
In 2020 we purchased unbundled from India; in 2021 Unilever developed a tracking system for Pakistan.

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

Country/area of renewable electricity consumption
Sri Lanka

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Renewable electricity mix, please specify
Solar/Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
13,650.7

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
13,671.29

Country/area of origin (generation) of the renewable electricity/attribute consumed
India

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Vintage of the renewable energy/attribute (i.e. year of generation)
2021
Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC bought in an adjacent market

Given the large number of redemption certificates that Unilever receives when purchasing renewable electricity, and the time resources required to individually open these to extract the required information, we have aggregated volumes at country sourcing method level. Therefore for this submission, we are unable provide individual commissioning years.

Vintage year: our reporting period covers Q4 2020 - Q3 2021 - as we can only select one year in the portal, we select 2021 only to comply with requirements.

C8.2i

(C8.2i) Provide details of your organization’s low-carbon heat, steam, and cooling purchases in the reporting year by country.

Country/area of consumption of low-carbon heat, steam or cooling
Brazil

Sourcing method
Heat/steam/cooling supply agreement

Energy carrier
Steam

Low-carbon technology type
Renewable energy mix

Low-carbon heat, steam, or cooling consumed (MWh)
42,269

Comment

Country/area of consumption of low-carbon heat, steam or cooling
Denmark

Sourcing method
Heat/steam/cooling supply agreement

Energy carrier
Steam
Low-carbon technology type
 Renewable energy mix

Low-carbon heat, steam, or cooling consumed (MWh)
 644

Comment

Country/area of consumption of low-carbon heat, steam or cooling
 Germany

Sourcing method
 Heat/steam/cooling supply agreement

Energy carrier
 Steam

Low-carbon technology type
 Renewable energy mix

Low-carbon heat, steam, or cooling consumed (MWh)
 10,440

Comment

Country/area of consumption of low-carbon heat, steam or cooling
 Indonesia

Sourcing method
 Heat/steam/cooling supply agreement

Energy carrier
 Steam

Low-carbon technology type
 Renewable energy mix

Low-carbon heat, steam, or cooling consumed (MWh)
 68,674

Comment

Country/area of consumption of low-carbon heat, steam or cooling

233
Pakistan

Sourcing method
Heat/steam/cooling supply agreement

Energy carrier
Steam

Low-carbon technology type
Renewable energy mix

Low-carbon heat, steam, or cooling consumed (MWh)
36,735

Comment

Country/area of consumption of low-carbon heat, steam or cooling
Poland

Sourcing method
Heat/steam/cooling supply agreement

Energy carrier
Steam

Low-carbon technology type
Renewable energy mix

Low-carbon heat, steam, or cooling consumed (MWh)
7,355

Comment

Country/area of consumption of low-carbon heat, steam or cooling
South Africa

Sourcing method
Heat/steam/cooling supply agreement

Energy carrier
Steam

Low-carbon technology type
Renewable energy mix

Low-carbon heat, steam, or cooling consumed (MWh)
11,655
Comment

Country/area of consumption of low-carbon heat, steam or cooling
Sri Lanka

Sourcing method
Heat/steam/cooling supply agreement

Energy carrier
Steam

Low-carbon technology type
Renewable energy mix

Low-carbon heat, steam, or cooling consumed (MWh)
36,815

Comment

C8.2j

(C8.2j) Provide details of your organization’s renewable electricity generation by country in the reporting year.

Country/area of generation
Ghana

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
788

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
788

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0
Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
788

Comment

Country/area of generation
Nigeria

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
5

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
5

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0
Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
5

Comment

Country/area of generation
South Africa

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
1,012

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
1,012

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0
Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]

1,012

Comment

Country/area of generation
France

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
0.02

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
0.02

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
<table>
<thead>
<tr>
<th>Country/area of generation</th>
<th>Greece</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable electricity technology type</td>
<td>Solar</td>
</tr>
<tr>
<td>Facility capacity (MW)</td>
<td>0</td>
</tr>
<tr>
<td>Total renewable electricity generated by this facility in the reporting year (MWh)</td>
<td>429</td>
</tr>
<tr>
<td>Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)</td>
<td>429</td>
</tr>
<tr>
<td>Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Renewable electricity sold to the grid in the reporting year (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Certificates issued for the renewable electricity that was sold to the grid (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Type of energy attribute certificate</td>
<td></td>
</tr>
<tr>
<td>Total self-generation counted towards RE100 target (MWh) [Auto-calculated]</td>
<td>429</td>
</tr>
</tbody>
</table>

Comment
Country/area of generation
Netherlands

Renewable electricity technology type
Solar

Facility capacity (MW)

Total renewable electricity generated by this facility in the reporting year (MWh)
527

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
527

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
527

Comment

Country/area of generation
Portugal

Renewable electricity technology type
Solar
Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
117

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
117

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
117

Comment

Country/area of generation
Argentina

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable electricity directly consumed by your organization from this</td>
<td>31</td>
</tr>
<tr>
<td>facility in the reporting year for which certificates were not issued</td>
<td></td>
</tr>
<tr>
<td>(MWh)</td>
<td></td>
</tr>
<tr>
<td>Renewable electricity directly consumed by your organization from this</td>
<td>0</td>
</tr>
<tr>
<td>facility in the reporting year for which certificates were issued and</td>
<td></td>
</tr>
<tr>
<td>retired (MWh)</td>
<td></td>
</tr>
<tr>
<td>Renewable electricity sold to the grid in the reporting year (MWh)</td>
<td>0</td>
</tr>
<tr>
<td>Certificates issued for the renewable electricity that was sold to the</td>
<td>0</td>
</tr>
<tr>
<td>grid (MWh)</td>
<td></td>
</tr>
<tr>
<td>Certificates issued and retired for self-consumption for the renewable</td>
<td>0</td>
</tr>
<tr>
<td>electricity that was sold to the grid (MWh)</td>
<td></td>
</tr>
<tr>
<td>Type of energy attribute certificate</td>
<td></td>
</tr>
<tr>
<td>Total self-generation counted towards RE100 target (MWh) [Auto-calculated]</td>
<td>31</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
</tbody>
</table>

Country/area of generation

Brazil

Renewable electricity technology type

Solar

Facility capacity (MW)

0

Total renewable electricity generated by this facility in the reporting year (MWh)

31

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)

31
Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
31

Comment

Country/area of generation
El Salvador

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
4

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
4

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0
Renewable electricity sold to the grid in the reporting year (MWh) 0

Certificates issued for the renewable electricity that was sold to the grid (MWh) 0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh) 0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated] 4

Comment

Country/area of generation
Saudi Arabia

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh) 22

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh) 22

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh) 0

Renewable electricity sold to the grid in the reporting year (MWh) 0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
22

Comment

Country/area of generation
Turkey

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
99

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
99

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0
Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]

99

Comment

Country/area of generation
United Arab Emirates

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
1,336

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
1,336

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
Country/area of generation
China

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
360

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
360

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
360

Comment
Country/area of generation
Indonesia

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
248

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
248

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
248

Comment

Country/area of generation
Bangladesh

Renewable electricity technology type
Solar
Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
90

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
90

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
90

Comment
We do not disclose Facility Capacity for this submission

Country/area of generation
India

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
7,124

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
7,124

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
7,124

Comment
We do not disclose Facility Capacity for this submission

Country/area of generation
Pakistan

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
1,580

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
1,580
Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
1,580

Comment
We do not disclose Facility Capacity for this submission

Country/area of generation
Sri Lanka

Renewable electricity technology type
Solar

Facility capacity (MW)
0

Total renewable electricity generated by this facility in the reporting year (MWh)
21

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
21

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
0
Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
21

Comment
We do not disclose Facility Capacity for this submission

C8.2k

(C8.2k) Describe how your organization’s renewable electricity sourcing strategy directly or indirectly contributes to bringing new capacity into the grid in the countries/areas in which you operate.

Unilever operates over 280 factories in 60 countries. Our electricity consumption is distributed as follows: Asia 33%, the Americas 31%, Europe 22%, and Africa & remaining countries 14%. Transitioning to renewable electricity is a significant driver of emissions reduction in our operations. Our preference is to support local renewable energy markets through purchasing renewable electricity contracts called Power Purchase Agreements (PPAs), or green tariffs/bundled Renewable Energy Certificates (RECs) to match our grid power demand, where these are available and can be sourced in a cost competitive way. Where this is not possible, and as the next best option, we seek to purchase unbundled RECs sold separately from electricity in the same market. Only as a last resort, and when unbundled RECs are not available in a market where we buy electricity, do we buy unbundled RECs in an adjacent market.

In 2020 Unilever achieved purchasing 100% grid electricity from renewable sources for our own operations according to the RE100 credible claims guidance at that time. This was achieved through a mix of instruments such as off-site PPA’s, green tariffs and unbundled REC’s as well as establishing on-site RE electricity generation to reduce sites electricity grid demand. Since then Unilever’s renewable electricity strategy has been to increase the quality of our RE electricity supply by increasing physical RE electricity supply and hence reducing the amount of unbundled REC’s.

Direct Impact:
In most European countries and parts of the Americas electricity markets are liberalised, which gives Unilever the opportunity to contract national renewable electricity supply contracts through green tariffs or off-site PPA’s. For example, Unilever entered into a wind PPA in Mexico in 2016 which enabled the project owner to finance the wind park.

In addition, Unilever’s purchasing strategy has established:

- A supplier ranking favouring the renewable electricity suppliers in tenders which have the most compelling renewable electricity strategy in place, for example plans to increase their renewable production assets base to 100%;
- An asset ranking preferring green tariffs or PPA’s from production assets which have been recently built.

However, many countries Unilever operates in do not have liberalised electricity markets, meaning companies have to purchase electricity from state utilities. Depending on country specific legislation, the only opportunity to add renewable electricity assets is through on-site installations. There are solar PV installations at 42 Unilever sites across 24 countries, and 8 currently under implementation. These include in Asia (27 completed installations / 7 under implementation), Africa (4 completed installations / 1 under implementation) the Middle East (3 completed installations), and in Europe, the US and South America (7 completed installations).

Indirect impact:

In the USA, 86% of Unilever’s electricity demand is located within states with regulated electricity markets. In these states, our manufacturing sites have to purchase electricity from dedicated state utilities. In Missouri (one of the most coal-dependent US states) where Unilever has 3 sites, our strategy has been to contact state utilities to ask for renewable electricity supply from within state or from wind or solar farms. Unilever started this initiative in 2019. In 2020, Unilever and other interested companies were asked by Ameren, one of Missouri’s state utilities and one of the most coal-dependent utilities companies in the US, to help shape its “Renewable Solution Program” which was launched in June 2021. This program will generate additional renewable capacity in relation to Ameren’s general renewable electricity capacity roll out plan.

Unilever is an active participant in various business coalitions striving for stronger climate action. Unilever specifically supports initiatives aimed at adding clean power capacity. As a member of the RE100 Advisory Committee, we actively help to drive forward RE100’s mission to accelerate change towards zero carbon grids at scale and get more companies to switch to 100% renewables. In 2021, Unilever used its influence as a COP26 Principal Partner to rally governments and international business to take climate action and accelerate the clean energy transition. We signed up to US State Department’s Clean Energy Demand Initiative, to send an investment signal to countries and encourage them to create enabling environments for corporate renewable procurement. Ahead of COP26, we were one of over 600 companies that wrote to G20 governments to demand stronger climate commitments, including climate finance for developing countries, ending fossil fuel subsidies, and putting a price on carbon.

Unilever will continue to advocate for RE in the run up to COP27.
C8.2i

(C8.2i) In the reporting year, has your organization faced any challenges to sourcing renewable electricity?

<table>
<thead>
<tr>
<th>Challenges to sourcing renewable electricity</th>
<th>Challenges faced by your organization which were not country-specific</th>
</tr>
</thead>
</table>
| Yes, both in specific countries/areas and in general | 1. National energy legislation (in large countries with state energy legislation) is regulated and companies are not allowed to choose grid electricity suppliers hence we cannot contract physical renewable electricity supply sources
2. National market entry barriers for independent electricity generators are high so even for on-site renewable electricity installations, no or very limited options are available. E.g. on-site renewable installation and off-site renewable electricity project developments are prohibited. Amongst others, Indonesia is a market where this occurs.
3. No national Energy Attribute Certification system is available. (See countries specified in response to question 8.2m).
4. Governments subsidise grid electricity to such an extent that renewable electricity generation projects are not financially viable. |

C8.2m

(C8.2m) Provide details of the country-specific challenges to sourcing renewable electricity faced by your organization in the reporting year.

<table>
<thead>
<tr>
<th>Country/area</th>
<th>Reason(s) why it was challenging to source renewable electricity within selected country/area</th>
<th>Provide additional details of the barriers faced within this country/area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egypt</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Lack of EAC registered projects</td>
</tr>
<tr>
<td></td>
<td>Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Morocco</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Lack of EAC registered projects</td>
</tr>
<tr>
<td></td>
<td>Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Uganda</td>
<td>Lack of credible renewable electricity procurement</td>
<td>Lack of EAC registered projects</td>
</tr>
<tr>
<td>Country</td>
<td>Issues</td>
<td>Lack of EAC registered projects</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Ghana</td>
<td>Options (e.g. EACs, Green Tariffs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Lack of EAC registered projects</td>
</tr>
<tr>
<td></td>
<td>Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Honduras</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Russian Federation</td>
<td>Lack of credible renewable electricity procurement</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Challenges</td>
<td>Additional Information</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Turkey</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs) Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Bangladesh</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs) Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs) Prohibitively priced renewable electricity</td>
<td>Inability to develop No EAC countries schema on voluntary base. Unilever encouraged EAC schema in Pakistan - solved in 2021.</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs) Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Myanmar</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs) Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs) Prohibitively priced renewable electricity</td>
<td></td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>Lack of credible renewable electricity procurement</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Country</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Kenya</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>United Republic of Tanzania</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Ireland</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Romania</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Bolivia (Plurinational State of)</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Country</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Venezuela (Bolivarian Republic of)</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Algeria</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Iran (Islamic Republic of)</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Tunisia</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Ukraine</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Myanmar</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Inability to develop: No EAC country schema on voluntary basis.</td>
</tr>
<tr>
<td>Hungary</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Limited regulatory solutions are available to PPAs with independent producers connected to existing government initiatives. There is a lack of incentives to facilitate the development of PPA projects for Unilever operations.</td>
</tr>
<tr>
<td>United States of America</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Limited regulatory solutions are available to PPAs with independent producers connected to existing government initiatives. There is a lack of incentives to facilitate the development of PPA projects for Unilever operations.</td>
</tr>
<tr>
<td>Country</td>
<td>Regulatory Issue</td>
<td>Other Comments</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Turkey</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Limited regulatory solutions are available to PPAs with independent producers connected to existing government initiatives. There is a lack of incentives to facilitate the development of PPA projects for Unilever operations.</td>
</tr>
<tr>
<td>South Africa</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Limited regulatory solutions are available to PPAs with independent producers connected to existing government initiatives. There is a lack of incentives to facilitate the development of PPA projects for Unilever operations.</td>
</tr>
<tr>
<td>China</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Limited regulatory solutions are available to PPAs with independent producers connected to existing government initiatives. There is a lack of incentives to facilitate the development of PPA projects for Unilever operations.</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Lack of credible renewable electricity procurement options (e.g. EACs, Green Tariffs)</td>
<td>Limited regulatory solutions are available to PPAs with independent producers connected to existing government initiatives. There is a lack of incentives to facilitate the development of PPA projects for Unilever operations.</td>
</tr>
</tbody>
</table>
C9. Additional metrics

C9.1

(C9.1) Provide any additional climate-related metrics relevant to your business.

<table>
<thead>
<tr>
<th>Description</th>
<th>Energy usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric value</td>
<td>1.22</td>
</tr>
<tr>
<td>Metric numerator</td>
<td>GJ</td>
</tr>
<tr>
<td>Metric denominator (intensity metric only)</td>
<td>Per tonne of production</td>
</tr>
<tr>
<td>% change from previous year</td>
<td>0.5</td>
</tr>
<tr>
<td>Direction of change</td>
<td>Increased</td>
</tr>
</tbody>
</table>

Please explain

This metric relates to energy intensity within Unilever’s manufacturing operations. Since 2008, energy intensity has been reduced by 31%, which has contributed to cumulative cost benefits of €870 million.

C10. Verification

C10.1

(C10.1) Indicate the verification/assurance status that applies to your reported emissions.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Verification/assurance status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope 1</td>
<td>Third-party verification or assurance process in place</td>
</tr>
<tr>
<td>Scope 2 (location-based or market-based)</td>
<td>Third-party verification or assurance process in place</td>
</tr>
<tr>
<td>Scope 3</td>
<td>Third-party verification or assurance process in place</td>
</tr>
</tbody>
</table>

C10.1a

(C10.1a) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.
Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
Limited assurance

Attach the statement
PWC Assurance.pdf

Page/section reference
Page 4 – See assurance of the “Energy and greenhouse gases” EOS indicators includes Scope 1 and Scope 2 emissions from our manufacturing operations.

Relevant standard
ISAE3000

Proportion of reported emissions verified (%)
100

C10.1b

(C10.1b) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Scope 2 approach
Scope 2 market-based

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
Limited assurance

Attach the statement
PWC Assurance - scope 2.pdf

Page/section reference
Page 4 – See assurance of the “Energy and greenhouse gases” EOS indicators includes Scope 1 and Scope 2 emissions from our manufacturing operations.
Relevant standard
ISAE 3410

Proportion of reported emissions verified (%)
100

C10.1c

(C10.1c) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

Scope 3 category
Scope 3: Purchased goods and services
Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2)
Scope 3: Upstream transportation and distribution
Scope 3: Downstream transportation and distribution
Scope 3: Processing of sold products
Scope 3: Use of sold products
Scope 3: End-of-life treatment of sold products

Verification or assurance cycle in place
Biennial process

Status in the current reporting year
Complete

Type of verification or assurance
Limited assurance

Attach the statement

PWC Assurance - scope 3.pdf

Page/section reference
Page 3 – Limited assurance of the “Greenhouse gases footprint” Compass indicator
“The percentage change in the greenhouse gas impact of our products across the lifecycle per consumer use between the 2010 baseline and 2021 footprint. Scope 3 emissions cover 6 lifecycle phases: raw materials (primary & secondary packaging, ingredients), manufacturing, distribution, retail, consumer use, and disposal i.e. cover more than the emissions from “use of sold products”.

Relevant standard
ISAE 3410

Proportion of reported emissions verified (%)
100
C10.2

(C10.2) Do you verify any climate-related information reported in your CDP disclosure other than the emissions figures reported in C6.1, C6.3, and C6.5?

Yes

C10.2a

(C10.2a) Which data points within your CDP disclosure have been verified, and which verification standards were used?

<table>
<thead>
<tr>
<th>Disclosure module verification relates to</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
</table>
| C4. Targets and performance | Progress against emissions reduction target | ISAE3000 | We assure the reduction in absolute and per tonne of production of Scope 1 and 2 manufacturing CO2 from energy use versus a 2008 baseline:
 • Absolute change in the tonnes of CO2 from energy use (market based) in 2021 (1 October 2020 to 30 September 2021) compared to 2008 (1 January 2008 to 31 December 2008)
 • Percentage change in CO2 from energy use (market based) per tonne of production in 2021 (1 October 2020 to 30 September 2021) compared to 2008 (1 January 2008 to 31 December 2008) - 75% reduction per tonne of production (market based). |
| C4. Targets and performance | Year on year change in emissions (Scope 1 and 2) | ISAE3000, ISAE 3410 | Our external assurance provider (PwC) includes in its assurance report the CO2 emissions from energy per tonne of production reduction (intensity) in Scope 1 + 2 emissions for manufacturing emissions such that progress against our target in Metric tonnes CO2e per metric tonne of product is verified. |
| C8. Energy | Other, please specify | ISAE3000 | Our external assurance provider (PwC) includes in its assurance report the energy use in gigajoules per tonne of production in 2021. |
C11. Carbon pricing

C11.1

(C11.1) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?

Yes

C11.1a

(C11.1a) Select the carbon pricing regulation(s) which impacts your operations.

EU ETS
France carbon tax
South Africa carbon tax
UK ETS
Other carbon tax, please specify
Germany Carbon Tax

We do not report carbon taxes and their respective allowances in any of our countries operation as they are immaterial versus our overall tax obligations. We do however monitor EU ETS allowances.

C11.1b

(C11.1b) Complete the following table for each of the emissions trading schemes you are regulated by.

EU ETS

% of Scope 1 emissions covered by the ETS	1.3
% of Scope 2 emissions covered by the ETS	0
Period start date	January 1, 2021
Period end date	December 31, 2021
Allowances allocated	3,717
Allowances purchased	4,916
Verified Scope 1 emissions in metric tons CO2e
8,633

Verified Scope 2 emissions in metric tons CO2e
0

Details of ownership
Facilities we own and operate

Comment

UK ETS

% of Scope 1 emissions covered by the ETS
2.5

% of Scope 2 emissions covered by the ETS
0

Period start date
January 1, 2021

Period end date
December 31, 2021

Allowances allocated
1,906

Allowances purchased
18,801

Verified Scope 1 emissions in metric tons CO2e
20,707

Verified Scope 2 emissions in metric tons CO2e
0

Details of ownership
Facilities we own and operate

Comment

C11.1c

(C11.1c) Complete the following table for each of the tax systems you are regulated by.

France carbon tax

Period start date
January 1, 2021

Period end date
December 31, 2021

% of total Scope 1 emissions covered by tax
2.9

Total cost of tax paid
452,369

Comment

South Africa carbon tax

Period start date
January 1, 2021

Period end date
December 31, 2021

% of total Scope 1 emissions covered by tax
3.6

Total cost of tax paid
41,370

Comment

Other carbon tax, please specify

Period start date
January 1, 2021

Period end date
December 31, 2021

% of total Scope 1 emissions covered by tax
2.9

Total cost of tax paid
426,000

Comment

Germany Carbon Tax

C11.1d

(C11.1d) What is your strategy for complying with the systems you are regulated by or anticipate being regulated by?
Unilever understands carbon taxes and emissions trading systems are generally increasing by number, scope, and price, and expects this to continue to happen in the future.

Strategy for identifying/monitoring:

The process for assessing and identifying climate-related risks is the same for the principal risks and takes into account Legal and regulatory risk as a specific category. We review regulatory risks, such as carbon pricing, via our annual scenario analysis. In 2021, in our scenario analysis, we assumed a carbon price of 245 USD/tonne and a carbon offsetting price of 65 USD/tonne, both by 2050. By doing so it has prepared us for long-term compliance and strategy to manage the regulatory risk associated with carbon pricing systems.

Risks are reviewed and assessed on an ongoing basis and formally at least once per year. For each of our principal risks we have a risk management framework detailing the controls we have in place, who is responsible for managing both the overall risk and the individual controls mitigating it. We monitor risks throughout the year to identify changes in the risk profile and have relevant teams at global, regional or local levels who are responsible for setting detailed standards and ensuring that all employees are aware of and comply with regulations and laws specific and relevant to their roles.

Strategy for complying:

We mitigate regulatory risks through ongoing progress against the goals in our Compass and CTAP, notably our commitments on climate, deforestation and plastic packaging. We support the use of carbon pricing as an important tool to help us achieve our zero emissions goal.

To support our compliance, we have an internal carbon price also known as an internal carbon fee. Our internal carbon pricing approach is a mechanism which creates a sustainable capital investment fund by charging a fee for each tonne of emissions, these funds are then used to finance capital investments to decarbonise our operations.

In addition, we also continue our work on complying and advocating for stringent climate regulatory systems such as:

1) Monitoring carbon pricing in our markets
2) Monitoring governmental development around actions to combat climate change and advocating for changes to public policy frameworks that will enable accelerated decarbonisation.
3) Supporting alliances such as the We Mean Business Coalition and the Carbon Pricing Leadership Coalition, continuing to push for pro-climate market reforms.

C11.2

(C11.2) Has your organization originated or purchased any project-based carbon credits within the reporting period?

Yes
C11.2a

(C11.2a) Provide details of the project-based carbon credits originated or purchased by your organization in the reporting period.

<table>
<thead>
<tr>
<th>Credit origination or credit purchase</th>
<th>Credit purchase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project type</td>
<td>Agriculture</td>
</tr>
<tr>
<td>Project identification</td>
<td>TIST Program Uganda</td>
</tr>
<tr>
<td></td>
<td>VCU Serial Number: 8669-38262340-38262619-VCS-VCU-279-VER-UG-14-993-08072017-17042019-1</td>
</tr>
<tr>
<td>Verified to which standard</td>
<td>VCS (Verified Carbon Standard)</td>
</tr>
<tr>
<td>Number of credits (metric tonnes CO2e)</td>
<td>280</td>
</tr>
<tr>
<td>Number of credits (metric tonnes CO2e): Risk adjusted volume</td>
<td>0</td>
</tr>
<tr>
<td>Credits cancelled</td>
<td>Yes</td>
</tr>
<tr>
<td>Purpose, e.g. compliance</td>
<td>Voluntary Offsetting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit origination or credit purchase</th>
<th>Credit purchase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project type</td>
<td>Agriculture</td>
</tr>
<tr>
<td>Project identification</td>
<td>Through the World Land Trust</td>
</tr>
<tr>
<td></td>
<td>VERRA registry project ID: 1622 REDD</td>
</tr>
<tr>
<td></td>
<td>https://registry.verra.org/app/projectDetail/CCB/1622</td>
</tr>
<tr>
<td>Verified to which standard</td>
<td>VCS (Verified Carbon Standard)</td>
</tr>
<tr>
<td>Number of credits (metric tonnes CO2e)</td>
<td></td>
</tr>
</tbody>
</table>
Number of credits (metric tonnes CO2e): Risk adjusted volume
0

Credits cancelled
Yes

Purpose, e.g. compliance
Voluntary Offsetting

Credit origination or credit purchase
Credit purchase

Project type
Agriculture

Project identification
Through World Land Trust, SIERRA DE XILITLA, MEXICO

Verified to which standard
Other, please specify
WLT Carbon Balanced projects (no external certification)

Number of credits (metric tonnes CO2e)
3,836

Number of credits (metric tonnes CO2e): Risk adjusted volume
0

Credits cancelled
Yes

Purpose, e.g. compliance
Voluntary Offsetting

C11.3

(C11.3) Does your organization use an internal price on carbon?
Yes

C11.3a

(C11.3a) Provide details of how your organization uses an internal price on carbon.

Objective for implementing an internal carbon price
Stakeholder expectations
Change internal behavior
Drive energy efficiency
Drive low-carbon investment
Identify and seize low-carbon opportunities
Other, please specify
 ● Transition to a low carbon economy & drive innovation

☐ GHG scope as follows for Unilever internal carbon pricing schemes:
 Scope 1 (Unilever)
 Scope 1, 2 and 3 (Ben & Jerry’s)

GHG Scope

 - Scope 1
 - Scope 2
 - Scope 3

Application

In 2021, we re-evaluated our approach to internal carbon pricing. We decided to make the use of an internal carbon price signal mandatory for all capital investment projects where the investment is >€1M, which covers approximately 80% of our total capital investment. We also recommend the use of carbon pricing in all other investments, in particular decarbonisation and energy efficiency projects.

We have integrated internal carbon pricing with our standardised project cash flow and business case templates. All projects where the investment is greater than €1M are to show project financial metrics such as NPV, IRR, and payback both with and without carbon pricing applied.

In parallel to the company-wide approach described above, two brands use internal carbon pricing to create their own sustainability investment funds. Ben & Jerry’s and Seventh Generation both apply a carbon tax to their lifecycle emissions to create dedicated sustainability funds.

Actual price(s) used (Currency /metric ton)

70

Variance of price(s) used

We uniformly apply our internal carbon price signal of €70/T CO2e across the company. In setting our carbon price, we followed expert recommendations from the World Bank High Level Commission on Carbon Pricing Report. The report recommends a carbon price of between $40 - $80 / TCO2e by 2030 to be necessary to achieve the goals of the Paris agreement. Our carbon price is currently in the upper quartile of that range. We plan to review this carbon price for effectiveness and alignment with our goals on an annual basis.

Type of internal carbon price
Shadow price
Internal fee

Impact & implication

Shadow price - The shadow price provides decision-makers a useful tool for understanding the significance of incremental carbon emissions as part of the overall investment. Decarbonisation projects typically have a lower direct return on investment than other projects, so it helps with articulating the business case for projects where carbon abatement is the main driver.

Internal Fee - In addition, our ice cream company Ben & Jerry’s has instituted an internal carbon tax for each metric tonne of its GHG emissions from farm to landfill. The company pays the tax itself with funds going towards internal GHG-reducing initiatives. 42% of its ice cream lifecycle emissions come from dairy so the company works with farmers to implement GHG footprint-reducing strategies, including manure separators that turn methane into bedding for cows. Additional measures include investing in solar panels at the Vermont ice cream factory and installing electric vehicle charging stations at its facilities.

C12. Engagement

C12.1

(C12.1) Do you engage with your value chain on climate-related issues?

- Yes, our suppliers
- Yes, our customers/clients
- Yes, other partners in the value chain

C12.1a

(C12.1a) Provide details of your climate-related supplier engagement strategy.

Type of engagement

- Engagement & incentivization (changing supplier behavior)

Details of engagement

- Run an engagement campaign to educate suppliers about climate change
- Other, please specify
 - (Suppliers must commit to the fundamental mandatory principles of Unilever’s RSP which includes reducing their environmental impact. This is a prerequisite for supplying us)

% of suppliers by number
% total procurement spend (direct and indirect)
83

% of supplier-related Scope 3 emissions as reported in C6.5

Rationale for the coverage of your engagement
Unilever spent around €34 billion on goods and services with around 53,000 suppliers in 2021, giving us the scale and impact to influence those in our wider value chain. We use our multi-stakeholder approach to prioritise engagement with our key stakeholders. Suppliers and business partners continue to be a core part of this approach. Across our value chain – operations; sourcing and manufacturing, our suppliers help us achieve our sustainability commitments such as zero net deforestation which contributes to our wider climate change commitments. Through our Responsible Sourcing Policy (RSP), suppliers must confirm they have read and are committed to the mandatory requirements we set under the RSP’s fundamental principles. One of these fundamental mandatory principles is ‘Business is conducted in a manner which braces sustainability and reduces environment impact’. Unilever then provide suppliers with implementation guidance to ensure compliance, as well as the RSP Audit Requirements document, outlining how we undertake due diligence.

Impact of engagement, including measures of success
Our target is set at 100% of procurement spend being met through suppliers meeting the mandatory requirements of the Responsible Sourcing Policy (RSP).

Measure of Success and Threshold:

In 2017, we relaunched our RSP programme to strengthen our approach and to drive an increase in the number of suppliers committing to the programme. In 2021, the proportion of our suppliers meeting the requirements of our RSP reached 83%. Our 2021 performance is not comparable to previous years as we now include new acquisitions that are not yet fully integrated into our systems. Whilst we haven’t met 100%, we are clearly progressing in the right direction to show that the process is working. As a result, we expect our suppliers to meet a minimum level of environmental criteria in their supply chains as outlined in the RSP. Also in 2021, we continued our engagement with a subset of priority suppliers via the CDP Supply Chain survey, achieving 93% participation rate. This is well above average member participation rates of 71%, which aligns with our ambition to be an industry leader. We have consistently engaged directly with 83 of our key suppliers from a GHG and spend impact perspective over a period of a few years, achieving very high response rates.

Description of Impact:

This has resulted in our suppliers becoming more mature in relation to climate, with improvement in scopes across a range of parameters, such as setting emission reduction targets, calculating their scope 3 emissions, and integration of climate change
into their strategy.

In 2021, we engaged deeply with 10 representative suppliers to road test some concepts with us. The concepts we tested included topics such as ‘climate ambition’ and ‘footprinting capabilities’. The outputs of these conversations were used to inform the shape of our “Climate Promise” program, which we launched publicly at Climate Week NYC 2021. The Climate Promise asks our suppliers to do 3 things: 1) set a public target to halve absolute GHG emissions by 2030, 2) report openly on progress, and 3) share product footprint data with us.

In 2021 we also shaped the Climate Program, which is focused on a subset of our supply base that is most material from a climate perspective. Through the climate program – which will be launched in 2022 – we aim to work with and support our suppliers on climate.

Comment
None Required.

C12.1b

(C12.1b) Give details of your climate-related engagement strategy with your customers.

Type of engagement & Details of engagement
Education/information sharing
Run an engagement campaign to educate customers about the climate change impacts of (using) your products, goods, and/or services

% of customers by number
100

% of customer - related Scope 3 emissions as reported in C6.5
3.8

Please explain the rationale for selecting this group of customers and scope of engagement
Our brands are working to halve the greenhouse gas (GHG) footprint of a cup of tea, a laundry load or a hair wash by the end of this decade. Through innovation, R&D expertise, and partnerships with suppliers, we are finding lower carbon solutions for everyday products. Our goal is to halve the GHG impact of our products across the lifecycle by 2030.

A key part of our efforts to reduce greenhouse gas emissions across the lifecycle of our products is our engagement with our large retail customers who serve millions of consumers every day – in store (e.g. through point of sale communications) and increasingly online (e.g. through retailer e-commerce platforms). Our aim is to help
consumers make sustainable choices, in pursuit of our purpose to make sustainable living commonplace.

Engaging with all our large retail customers on sustainability issues such as climate change is a key part of the Unilever Compass, our business strategy which seeks to leverage our ‘brands with purpose’ to help our business grow. Furthermore, it’s the ambition of our Customer Development function to deeply embed sustainability in the Joint Business Plans of our top 30 Modern Trade Retailers.

Impact of engagement, including measures of success

Example of in store engagement:

In the Netherlands we established a 7-year collaboration with Albert Heijn (35% market share) and the National Postcode Lottery (NPL) to accelerate the transition towards more sustainable eating and plant-based diets (which have a lower carbon footprint). In the campaign all 2.85 million NPL members received a €12.50 voucher, which they could spend in a 3-week period to buy a more sustainable meal, choosing from over 1,500 Unilever or Albert Heijn private label products with a sustainability certification (i.e. Fairtrade or Rainforest Alliance) or based on Unilever’s sustainable agriculture programme.

Our measure of success:

Our aim is to encourage consumers to eat more sustainable meals, including plant-based meals with a lower carbon footprint. A follow up consumer study showed that of the 38% of consumers who had heard of the campaign, 58% started eating more meat substitutes because of the campaign experience.

Example of online engagement:

We’re working with our customer Amazon, to help shoppers find sustainable Unilever brands with a lower environmental footprint such as Cif, Dove and Seventh Generation through the Climate Pledge Friendly filter which was launched in September 2020.

Measure of success:

The purpose of the programme is to make it easy for shoppers to discover and shop for more sustainable products through badging. Products qualify by either being either “compact by design” – meaning they are smaller and lighter compared to the category standard, or certified by a select list of trusted third-party organizations like the Rainforest Alliance. The goal for this programme is to reduce the GHG emissions and physical waste impact from everyday consumables, with success linked to purchase volumes of products with the badge. In 2021, Unilever had around 600 products featured in this programme.
C12.1d

(C12.1d) Give details of your climate-related engagement strategy with other partners in the value chain.

We have a long tradition of working with civil society organisations, multilateral institutions and other companies to advance the sustainable development agenda and influence the public policy frameworks that will accelerate progress.

To support our Climate Transition Action Plan, our approach to advocacy and partnerships is divided into four types of activity:

1. High-level advocacy in support of the goals of the Paris Agreement:
2. National and regional climate policy
3. Issue-specific policy engagement and partnerships:
4. Industry partnerships

We’ve committed to ensuring that all direct lobbying relevant to climate policy is consistent with the Paris Agreement. At the end of 2021 we published our climate policy position on our website for indirect climate lobbying. In 2021 we rejoined the European Chemical Industry Council (CEFIC) to help accelerate the European chemical industry’s transition towards circular chemistry. We will clearly indicate when CEFIC submissions on climate change-related policies do not align with our own climate positions.

We were an early signatory to the We Mean Business open letter to G20 leaders calling for higher ambition ahead of the COP26 conference in 2021. Subsequently we partnered with the UK government as a Principal Partner of COP26 in Glasgow. Our current CEO served as a member of the COP26 Business Leaders Group to rally UK and international businesses. During the conference, we participated in numerous events including the World Leaders Summit, the Forest, Agriculture, Commodities and Trade (FACT) dialogue to reduce emissions in commodity value chains and events on creating high integrity standards for voluntary carbon markets. We also developed a climate advocacy toolkit to support our market teams to push for higher climate ambition.

In 2021, we continued our engagement with a selected group of international climate leadership strategic partners – the United Nations Global Compact, the World Economic Forum, the World Business Council for Sustainable Development, and the Consumer Goods Forum (CGF). We initiated and co-chaired with Walmart a Race to Zero Task Force within the CGF to encourage other consumer goods and retail companies to join the UN’s Race to Zero. This succeeded in doubling the number of CGF Board members making such commitments. We also helped to create a Transform to Net Zero guide for businesses.

C12.2

(C12.2) Do your suppliers have to meet climate-related requirements as part of your organization’s purchasing process?

No, but we plan to introduce climate-related requirements within the next two years.
C-AC12.2/C-FB12.2/C-PF12.2

(C-AC12.2/C-FB12.2/C-PF12.2) Do you encourage your suppliers to undertake any agricultural or forest management practices with climate change mitigation and/or adaptation benefits?
Yes

C-AC12.2a/C-FB12.2a/C-PF12.2a

(C-AC12.2a/C-FB12.2a/C-PF12.2a) Specify which agricultural or forest management practices with climate change mitigation and/or adaptation benefits you encourage your suppliers to undertake and describe your role in the implementation of each practice.

<table>
<thead>
<tr>
<th>Management practice reference number</th>
<th>MP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management practice</td>
<td>Biodiversity considerations</td>
</tr>
<tr>
<td>Description of management practice</td>
<td>The SAC and equivalent schemes, stipulate management requirements for biodiversity, natural resources and ecosystem services, like the need for a plan to manage</td>
</tr>
<tr>
<td>Your role in the implementation</td>
<td>Knowledge sharing Operational Procurement</td>
</tr>
<tr>
<td>Explanation of how you encourage implementation</td>
<td>Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs. Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building. Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.</td>
</tr>
<tr>
<td>Climate change related benefit</td>
<td>Increasing resilience to climate change (adaptation) Increase carbon sink (mitigation)</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
</tbody>
</table>
Management practice provides supporting services to agricultural, like pollination by bees and other insects. By supporting biodiversity, agriculture is better able to cope with shocks that could undermine productivity.

Management practice reference number
MP5

Management practice
Composting

Description of management practice
Some of the standards recognised by us have requirements for the production, application, handling and storage of compost. An example of a composting requirement is for the location of the storage area to be a safe distance from living quarters and waterways.

Your role in the implementation
Knowledge sharing
Operational
Procurement

Explanation of how you encourage implementation
Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from

Climate change related benefit
Reduced demand for fossil fuel (adaptation)
Reduced demand for fertilizers (adaptation)

Comment
As an alternative to the use of synthetic fertilizers, this practice would reduce their use and the emissions attributed to fossil fuels used in production of the product.

Management practice reference number
MP3
Management practice
Contour farming

Description of management practice
As an example, farmers implementing the SAC are encouraged to use apply contour farming to mitigate soil erosion

Your role in the implementation
Knowledge sharing
Operational
Procurement

Explanation of how you encourage implementation
Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.

Climate change related benefit
Reduced demand for fossil fuel (adaptation)
Reduced demand for fertilizers (adaptation)

Comment
By reducing the risk of soil erosion and consequent loss of valuable nutrients, contour farming reduces overall fertilizer use.

Management practice reference number
MP10

Management practice
Integrated pest management

Description of management practice
As an example, farmers implementing the SAC are required to incorporate crop rotation into their integrated pest management plan.

Your role in the implementation
Knowledge sharing
Operational
Procurement
Explanation of how you encourage implementation

Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.

Climate change related benefit

- Reduced demand for fossil fuel (adaptation)
- Reduced demand for fertilizers (adaptation)
- Reduced demand for pesticides (adaptation)

Comment

This activity is beneficial for preventing the build-up of particular pests and improving soil fertility, by rotating crops that have different nutrient requirements. As such, it may reduce the demand for synthetic fertilizers and pesticides, and their associated reliance on fossil fuels in production of these.

Management practice reference number

MP5

Management practice

Efficient equipment use

Description of management practice

Most standards require farmers have an energy management plan to identify, management and monitor energy use to gain efficiencies.

Your role in the implementation

- Knowledge sharing
- Operational
- Procurement

Explanation of how you encourage implementation

Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.
Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.

Climate change related benefit
- Emissions reductions (mitigation)
- Reduced demand for fossil fuel (adaptation)

Comment
Reducing energy use will have a direct reduction in emissions associated with generation and fossil fuels implicated in this.

Management practice reference number
MP6

Management practice
Equipment maintenance and calibration

Description of management practice
As an example, farmers implementing the SAC are required to maintain and calibrate their machinery to ensure desired flow rates and distribution patterns are delivered.

Your role in the implementation
- Knowledge sharing
- Operational
- Procurement

Explanation of how you encourage implementation
Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.

Climate change related benefit
- Reduced demand for fossil fuel (adaptation)
- Reduced demand for fertilizers (adaptation)
- Reduced demand for pesticides (adaptation)
Comment
This practice would optimise use of inputs, thus avoiding wastage and leading to the associated climate change benefits.

Management practice reference number
MP8

Management practice
Fertilizer management

Description of management practice
As an example, farmers implementing the SAC are required to take crop needs into account at all stages of growth and use this to design the Nutrient Management Plan.

Your role in the implementation
Knowledge sharing
Operational
Procurement

Explanation of how you encourage implementation
Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.

Climate change related benefit
Emissions reductions (mitigation)
Reduced demand for fossil fuel (adaptation)
Reduced demand for fertilizers (adaptation)

Comment
Management would reduce emissions released through over-application of synthetic fertilisers and the emissions attributed to fossil fuels used in production of the product.

Management practice reference number
MP9

Management practice
Fire control
Description of management practice
As an example, farmers implementing the SAC must not use fire for land preparation or in-field disposal of harvest residues.

Your role in the implementation
Knowledge sharing
Operational
Procurement

Explanation of how you encourage implementation
Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.

Climate change related benefit
Emissions reductions (mitigation)
Reduced demand for fossil fuel (adaptation)

Comment
Reducing energy use will have a direct reduction in emissions associated with generation and fossil fuels implicated in this.

Management practice reference number
MP6

Management practice
Equipment maintenance and calibration

Description of management practice
As an example, farmers implementing the SAC are required to maintain and calibrate their machinery to ensure desired flow rates and distribution patterns are delivered.

Your role in the implementation
Knowledge sharing
Operational
Procurement

Explanation of how you encourage implementation
Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.
Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.

Climate change related benefit
- Emissions reductions (mitigation)
- Reduced demand for fossil fuel (adaptation)
- Reduced demand for fertilizers (adaptation)
- Reduced demand for pesticides (adaptation)

Comment
This practice would optimise use of inputs, thus avoiding wastage and leading to the associated climate change benefits.

Management practice reference number
MP8

Management practice
Fertilizer management

Description of management practice
As an example, farmers implementing the SAC are required to take crop needs into account at all stages of growth and use this to design the Nutrient Management Plan.

Your role in the implementation
Knowledge sharing
Operational
Procurement

Explanation of how you encourage implementation
Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.
Climate change related benefit
Emissions reductions (mitigation)
Reduced demand for fossil fuel (adaptation)
Reduced demand for fertilizers (adaptation)

Comment
Management would reduce emissions released through over-application of synthetic fertilisers and the emissions attributed to fossil fuels used in production of the product.

Management practice reference number
MP9

Management practice
Fire control

Description of management practice
As an example, farmers implementing the SAC must not use fire for land preparation or in-field disposal of harvest residues.

Your role in the implementation
Knowledge sharing
Operational
Procurement

Explanation of how you encourage implementation
Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.

Climate change related benefit
Emissions reductions (mitigation)

Comment
By avoiding use of fire in farming practices, atmospheric pollution and associated emission would be avoided.

Management practice reference number
MP11

Management practice
Governmental or institutional policies and programs

Description of management practice
As an example, farmers implementing the SAC must comply with legal requirements applicable to the country of production. This could apply to laws prohibiting illegal deforestation.

Please ignore the management practice reference number. This is an additional management practice not already highlighted in 4.4a.

Your role in the implementation
Knowledge sharing
Operational
Procurement

Explanation of how you encourage implementation
Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.

Climate change related benefit
Emissions reductions (mitigation)
Increasing resilience to climate change (adaptation)

Comment
Legal compliance that prevents environmental damage and exploitation of resources has general benefits to ensuring resilience of the farming system is maintained and that emissions associated with activities like land use change from illegal deforestation are avoided.
Management practice reference number
MP10

Management practice
Integrated pest management

Description of management practice
As an example, farmers implementing the SAC must produce a plan that incorporate IPM principles of prevention, observation and intervention.

Your role in the implementation
Knowledge sharing
Operational

Explanation of how you encourage implementation
Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.

Climate change related benefit
Reduced demand for pesticides (adaptation)

Comment
Adoption of this approach ensures that precautionary measures inform the application of pesticides and that pesticide use is reduced through the opting for preventative measures or biological agents.

Management practice reference number
MP13

Management practice
Land use change

Description of management practice
As an example, farmers implementing the SAC may not convert high conservation value / high ecological value or high carbon stock land to farmland.

Please ignore the management practice reference number. This is an additional management practice not already highlighted in 4.4a.
Your role in the implementation

Knowledge sharing
Operational
Procurement

Explanation of how you encourage implementation

Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.

Climate change related benefit

Emissions reductions (mitigation)

Comment

By preventing conversion of natural or semi-natural land uses to agriculture, the release of stored carbon will be avoided.

Management practice reference number

MP18

Management practice

Reducing energy use

Description of management practice

As an example, farmers implementing the SAC must develop an energy management plan to reduce energy consumption.

Your role in the implementation

Knowledge sharing
Operational
Procurement

Explanation of how you encourage implementation

Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.
Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions we source from.

Climate change related benefit
Emissions reductions (mitigation)

Comment
This will directly reduce emissions of the farm operation, given the emissions associated with upstream energy generation, where fossil fuel-derived sources are concerned.

Management practice reference number
MP15

Management practice
Timing of farm operations

Description of management practice
As an example, the timing of application of nutrients should consider weather conditions, to avoid runoff and loss of nutrient to rivers.

Please ignore the management practice reference number. This is an additional management practice not already highlighted in 4.4a.

Your role in the implementation
Knowledge sharing
Operational
Procurement

Explanation of how you encourage implementation
Our role when sourcing against the SAC versus schemes recognised as equivalent with the principles and practices of sustainable agriculture differs.

Knowledge Sharing and Operational: For suppliers using Unilever’s own code, an agronomic network of consultants implements the standard, through training and capacity building.

Procurement: For those suppliers of materials assured against external or industry-recognised standards, the demand Unilever procurement creates for sustainably grown materials, maintains and drives the uptake of these practices in the regions

Climate change related benefit
Reduced demand for fertilizers (adaptation)

Comment
By timing the use of inputs to account for external factors, the wastage of inputs is avoided, thus avoiding the need for further application.

C-AC12.2b/C-FB12.2b/C-PF12.2b

(C-AC12.2b/C-FB12.2b/C-PF12.2b) Do you collect information from your suppliers about the outcomes of any implemented agricultural/forest management practices you have encouraged?
Yes

C12.3

(C12.3) Does your organization engage in activities that could either directly or indirectly influence policy, law, or regulation that may impact the climate?

<table>
<thead>
<tr>
<th>Row 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct or indirect engagement that could influence policy, law, or regulation that may impact the climate</td>
</tr>
<tr>
<td>Yes, we engage directly with policy makers</td>
</tr>
<tr>
<td>Yes, we engage indirectly through trade associations</td>
</tr>
</tbody>
</table>

Does your organization have a public commitment or position statement to conduct your engagement activities in line with the goals of the Paris Agreement?
Yes

Attach commitment or position statement(s)

Responsible engagement in climate policy: An open letter from Unilever CEO to our trade associations and business groups has been attached.

Responsible engagement in climate policy from our trade associations and business groups: https://www.unilever.com/planet-and-society/responsible-business/engaging-with-stakeholders/

Describe the process(es) your organization has in place to ensure that your engagement activities are consistent with your overall climate change strategy

Trade Associations:

We’ve long championed the importance of aligning indirect climate lobbying through trade associations. Since 2019, we’ve asked the trade associations, of which Unilever is a member, to confirm that their lobbying activities are in line with the Paris Agreement.
too. In some cases, this triggered discussions to clarify existing positions and we’ll
continue our efforts in this area, publishing an annual list of principal trade associations.
We’ve committed to ensuring that all direct lobbying relevant to climate policy is
consistent with the Paris Agreement. At the end of 2021 we published our climate policy
position on our website for indirect climate lobbying. The climate crisis has now reached
a point where there can be no room for misinterpretation on the scale of the challenge,
or indeed on the importance of regulatory measures to support businesses in driving the
transition to a net zero emissions economy. Therefore, Unilever believes strongly in
working with trade associations that hold similar advocacy positions and alignment with
our broader climate objectives.

We are respectful of others’ views and perspectives and where differences arise, we
may publicly disagree from a trade association position. On major issues, if our views
and those of an association cannot be reconciled, then we will be prepared to withdraw
our membership.

Policy Makers:

We work directly with governments, regulators and legislators, and through trade
associations, to help develop laws and regulations that may affect our business. For
example, we participate in policy discussions on global issues like climate change, as
well as detailed subjects like product safety standards.

We were an early signatory to the We Mean Business open letter to G20 leaders calling
for higher ambition ahead of the COP26 conference in 2021. Subsequently we
partnered with the UK government as a Principal Partner of COP26 in Glasgow. Our
CEO served as a member of the COP26 Business Leaders Group to rally UK and
international businesses. During the conference, we participated in numerous events
including the World Leaders Summit, the Forest, Agriculture, Commodities and Trade
(FACT) dialogue to reduce emissions in commodity value chains and events on creating
high integrity standards for voluntary carbon markets. We also developed a climate
avocacy toolkit to support our market teams to push for higher climate ambition.

C12.3a

(C12.3a) On what policy, law, or regulation that may impact the climate has your
organization been engaging directly with policy makers in the reporting year?

Focus of policy, law, or regulation that may impact the climate

- Carbon tax
- Emissions trading schemes
- Other, please specify
 - Carbon Pricing
Specify the policy, law, or regulation on which your organization is engaging with policy makers

- Emissions Trading, carbon taxes

Policy, law, or regulation geographic coverage

- Global

Country/region the policy, law, or regulation applies to

Your organization’s position on the policy, law, or regulation

- Support with no exceptions

Description of engagement with policy makers

Unilever has consistently and publicly supported calls for carbon pricing.

- We are a member of the Carbon Pricing Leadership Coalition (CPLC) and support the Coalition’s High-Level Commission on Carbon Prices recommendations ($40-80 per tonne by 2020 rising to $50-100 per tonne by 2030, provided a supportive policy environment is in place). We also support the removal of fossil fuel subsidies, as these act as negative carbon prices.
- As part of CPLC we have published blogs and taken part in webinars to share our perspective and experience, for example on using carbon pricing to achieve corporate goals. We publicly welcomed the CPLC Report of the High-Level Commission on Carbon Prices in May 2017 which found there was little evidence to support the view that carbon pricing damaged competitiveness – and that potential risks could be mitigated.
- We have signed a number of statements in support of carbon pricing, for example the Prince of Wales’s Corporate Leaders Group Carbon Price Communiqué and the World Bank statement on carbon pricing. We are also a member of the UN Global Compact Carbon Pricing Coalition.
- We have engaged heads of state and finance ministers on the need for carbon pricing as a key policy solution to address climate change, for example at the World Economic Forum’s CEO Climate Leaders meetings in Davos.
- In the run-up to COP26 in Glasgow in 2021, we were an early signatory and promoter of the We Mean Business Coalition’s letter to G20 leaders. Amongst other policies, the letter urged G20 leaders to ensure appropriate pricing signals by removing fossil fuel subsidies ideally by 2025 and putting a meaningful price on carbon that reflects the full costs of climate change, as part of a broader mix of policy instruments to support clean technology investments and innovation.
- As part of CLG Europe, we have recently been working on the European Commission’s Fit for 55 package, including advocating for a strengthened and ambitious EU Emissions Trading Scheme (ETS). We are fully aligned with the CLG position that free allowances should be phased out as fast as possible for those sectors that are not facing large-scale low-carbon competition from overseas. We made this position clear not only through our support of the CLG position but through direct communication with the rapporteur and all the shadow rapporteurs.
Details of exceptions (if applicable) and your organization’s proposed alternative approach to the policy, law or regulation

Have you evaluated whether your organization’s engagement is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

Focus of policy, law, or regulation that may impact the climate
Renewable energy generation

Specify the policy, law, or regulation on which your organization is engaging with policy makers
Accelerated deployment of renewable energy worldwide

Policy, law, or regulation geographic coverage
Global

Country/region the policy, law, or regulation applies to

Your organization’s position on the policy, law, or regulation
Support with no exceptions

Description of engagement with policy makers
We focus on policy influencing work through advocacy groups such as RE100, which advocate for an accelerated deployment of renewable energy in markets. We intend to step up this engagement in more countries through a combination of direct engagement and through our trade associations.

In 2020, we were part of an RE100 campaign calling for a higher renewable energy target in Japan, and as a member for the RE 100 Advisory Board, have been helping to direct the advocacy strategy for the group. RE100 Members' combined demand for renewable energy is now greater than that of two G7 countries, UK or Italy.

Details of exceptions (if applicable) and your organization’s proposed alternative approach to the policy, law or regulation

Have you evaluated whether your organization’s engagement is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

Focus of policy, law, or regulation that may impact the climate
Climate-related targets
Specify the policy, law, or regulation on which your organization is engaging with policy makers

National climate plans under the Paris Agreement – Nationally Determined Contributions (NDCs)

Policy, law, or regulation geographic coverage

Global

Country/region the policy, law, or regulation applies to

Your organization’s position on the policy, law, or regulation

Support with no exceptions

Description of engagement with policy makers

Ahead of COP26 countries were obliged to renew and upgrade their NDCs in the first test of the Paris Agreement’s “ratchet mechanism”, which seeks to scale up ambition of pledges over time. Unilever is a strong supporter of increased climate ambition from countries and plans and policies commensurate with delivering on that ambition.

In April 2021 we supported a We Mean Business Coalition/CERES open letter to President Biden, calling on him to adopt a target of cutting GHG emissions by at least 50% below 2005 levels by 2030.

Later in 2021 we were an early signatory and promoter of the We Mean Business Coalition open letter to G20 leaders calling for higher ambition ahead of COP26. The letter urged leaders to strengthen NDCs in line with at least halving global emissions by 2030 and committing to achieving net zero emissions no later than 2050.

We partnered with the UK government as a Principal Partner of COP26 in Glasgow. Our CEO served as a member of the COP26 Business Leaders Group to rally UK and international businesses in support of higher climate ambition ahead of the COP. We developed a comprehensive climate advocacy toolkit to support our market teams to push for higher climate ambition in their countries and had gained particular traction in Australia, India and the US.

During the conference itself, we participated in numerous events including the World Leaders Summit, the Forest, Agriculture, Commodities and Trade (FACT) dialogue to reduce emissions in commodity value chains and events on creating high integrity standards for voluntary carbon markets.

Details of exceptions (if applicable) and your organization’s proposed alternative approach to the policy, law or regulation

Have you evaluated whether your organization’s engagement is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

Focus of policy, law, or regulation that may impact the climate

Minimum energy efficiency requirements

Specify the policy, law, or regulation on which your organization is engaging with policy makers

Minimum energy efficiency standards or requirements

Policy, law, or regulation geographic coverage

Country/region the policy, law, or regulation applies to

Your organization's position on the policy, law, or regulation

Support with no exceptions

Description of engagement with policy makers

Unilever recognises the importance of using energy efficiently, to reduce emissions in our own operations, upstream in our supply chain and downstream when consumers use our products. As a result, we advocate for minimum energy efficiency standards across a number of different sectors including buildings, transport and appliances.

For example,

- In January 2022, Unilever supported a Transport & Environment (T&E) letter to Members of the European Parliament, urging them to support the reform of EU road tolls in order to incentivise the switch to cleaner trucks by varying truck tolls according to climate emissions. Previously, Unilever had also been part of a T&E-coordinated coalition calling for the strengthening of EU efficiency targets for trucks. A joint letter requesting a high level of ambition resulted in draft proposals significantly more ambitious than those for which the haulage industry had asked.

- In June 2020 as part of CLG UK, Unilever joined more than 200 leading businesses in urging the UK Government to deliver a clean, inclusive and resilient Covid-19 recovery plan. The letter asked the Government to focus on sectors and activities that can best support sustainable growth, increased job creation and accelerate both the recovery and decarbonisation of the economy including building renovation and energy efficiency.

- Through the EU Alliance to Save Energy, EUASE, Unilever has called for recognition that energy efficiency can drive forward the EU’s competitiveness, energy security and climate change objectives, and for ambitious energy efficiency targets for 2030. In the US, Unilever has signed the BICEP (Business for Innovative Climate and Energy Policy) Climate Declaration, which specifically mentions the importance of energy efficiency.

- In 2017 we were part of the CEPS Circular Economy Task Force which produced its report in 2018 with a number of recommendations to drive resource efficiency including energy efficiency in the EU.
Details of exceptions (if applicable) and your organization’s proposed alternative approach to the policy, law or regulation

Have you evaluated whether your organization’s engagement is aligned with the goals of the Paris Agreement?
 Yes, we have evaluated, and it is aligned

C12.3b

(C12.3b) Provide details of the trade associations your organization engages with which are likely to take a position on any policy, law or regulation that may impact the climate.

Trade association
 Consumer Goods Forum (CGF)

Is your organization’s position on climate change consistent with theirs?
 Consistent

Has your organization influenced, or is your organization attempting to influence their position?
 We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)

The CGF’s environmental sustainability work positions the consumer goods industry as a leader in tackling climate change, reducing waste and improving environmental stewardship in global supply chains.

In pulling its weight to tackle climate change, the CGF has identified three key areas where its members are well-positioned to effect significant change. These are:

• Reducing food waste across operations and throughout the rest of the value chain
• Tackling deforestation
• Phasing out the most polluting refrigerants

To help the industry align around a common set of targets, CGF members have publicly committed to certain business practices through resolutions on deforestation (2010), refrigeration (2010 and 2016) and food waste (2015): these issues continue to be recognised as significant sources of greenhouse gasses. There is additional work with stakeholders to drive progress towards broader international goals, such as those set by the UN Sustainable Development Goals with a focus on developing partnerships (SDG 17). The CGF’s environmental work is also working on SDG 12 (ensure sustainable consumption for all), SDG 13 (Combat climate change and its impacts) and SDG 15
(Protect the planet). It became an official "Accelerator" of the UN-backed Race to Zero campaign, to help increase progress towards net zero among its global membership.

Unilever’s Chief Sustainability Officer, co-led the Sustainability Steering Committee during 2018. As co-lead, Unilever is very deeply involved in the development of both the CGF resolutions directly related to climate change on deforestation and sustainable refrigeration. Unilever’s CEO is a member of the Board of Directors of the CGF.

In 2021, we initiated and co-chaired with Walmart a Race to Zero Task Force within the CGF to encourage other consumer goods and retail companies to join the UN’s Race to Zero. This succeeded in doubling the number of CGF Board members making such commitments.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?

Yes, we have evaluated, and it is aligned

Trade association

Other, please specify

World Business Council for Sustainable Development

Is your organization’s position on climate change consistent with theirs?

Consistent

Has your organization influenced, or is your organization attempting to influence their position?

We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)

The WBCSD is a CEO-led organisation of nearly 200 companies committed to sustainable business. A key thrust of the WBCSD’s work is to advance the international climate policy debate through an active involvement in multilateral processes, particularly the United Nations Framework Convention on Climate Change (UNFCCC). WBCSD is one of the leading members of the We Mean Business Coalition and supports the policy asks championed by that coalition which are set out here: https://www.wemeanbusinesscoalition.org/policy/

We’re working extensively across a number of projects and initiatives with other
members. Unilever is a member of the WBCSD's SOS 1.5 programme, including contributing funding, and participates in its Climate Policy Working group.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?

Yes, we have evaluated, and it is aligned

Trade association

Other, please specify

UN Global Compact

Is your organization’s position on climate change consistent with theirs?

Consistent

Has your organization influenced, or is your organization attempting to influence their position?

We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)

We’re a member of the UNGC’s Caring for Climate Campaign and we’ve implemented the UNGC’s Business Leadership Criteria on Carbon Pricing. We also support its Guide to Responsible Engagement in Climate Policy, which calls for companies and trade associations to ensure their lobbying aligns with their public position on climate change. As members of the UNGC Action Platform on Pathways to Low Carbon and Resilient Development we help to steer the programme.

Our Chief Financial Officer (CFO) was also on the CFO Taskforce for the SDGs (running from 2019-2021). The taskforce played a key role in shaping the sustainability agenda of CFOs, developing a common language, collective ambitions, and resources for CFOs all around the world to accelerate corporate investments towards the Sustainable Development Goals (SDGs).

Through Caring for Climate, the UN Global Compact, together with UNEP and the secretariat of the UNFCCC, helps shape the engagement of businesses with climate change. Mobilizing a critical mass of business leaders to implement climate change solutions and help shape public policy, Caring for Climate is the world’s largest initiative for business leadership on climate change with over 400 companies from 60 countries.
Caring for Climate works collaboratively on joint initiatives between public and private sectors to understand and determine how both the public and private sectors can best take proactive and effective action in tackling climate change. Caring for Climate also encourages the private sector to take practical actions to continuously drive improvements on issues such as resource efficiency, carbon footprint reduction, working with governments and NGOs, peers, employees, customers and investors, as well as the broader public. It is part of the UNGC's Action Platform on Pathways to Low Carbon and Resilient Development.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

Trade association
Other, please specify
Alliance of CEO Climate Leaders

Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
The Alliance of CEO Climate Leaders is convened by the World Economic Forum. While not a trade association in the traditional sense, it does advocate policy positions in respect of climate change at an international level. In November 2018 the group issues an open letter to heads of state calling for the introduction of policies including the introduction of carbon pricing and the adoption of climate-related financial disclosure Standards. And in 2021, the group issued an open letter ahead of the G7 Heads of State meeting in the UK and World leaders at COP26.

Our CEO, is a member of WEF’s Alliance of CEO Climate Leaders, which advocates ambitious action on climate change. The group meets annually to collaborate to drive action on climate change and raise ambition for the yearly UN Climate Conference. Our
Senior Sustainability Managers – Climate Action are members of the Senior Advisors group which develops and recommends the strategy to the CEOs.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
 Yes, we have evaluated, and it is aligned

Trade association
 Other, please specify
 International Association for Soaps, Detergents and Maintenance Products (AISE)

Is your organization’s position on climate change consistent with theirs?
 Consistent

Has your organization influenced, or is your organization attempting to influence their position?
 We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)

 With regards to climate change, AISE is strongly committed to improving the sustainability of the European detergent and maintenance products industry as a whole by strong cooperation with the European legislators on this aspect, and by developing voluntary initiatives to reduce the environmental impact of the industry and its products.

 • In 2013 AISE volunteered for the EU Commission’s Product Environmental Footprint (PEF) 3 year pilot project that aims to set product category specific rules for reporting and/or communicating key product environmental scores. This will likely form the basis of EU sustainability initiatives for consumer products in the future.
 • AISE voluntary initiatives include detergent compaction projects for laundry products, and the AISE Charter for Sustainable Cleaning which lays down principles of continuous improvement in production as well as defines criteria for the more sustainable detergent products. Over 200 European companies have now committed to this Charter.
 • Furthermore AISE is strongly involved in consumer education to reduce the use of energy, water and chemicals in the use phase, via the Cleanright.eu portal and the ‘I prefer 30’ campaign that aims to reduce the average wash temperature used in Europe.

This campaign was initiated in 2013 and ran until 2016 in 5 EU countries (UK, IT, FR,
Unilever has been strongly engaged in the formulation of the AISE position and vision, and the execution of it. Unilever’s brands have developed concentrated detergents that work at lower temperatures. Our Vice President of Regulatory Affairs is on the AISE Board.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?

Yes, we have evaluated, and it is aligned.

Trade association

Other, please specify

Personal Care Products Council (PCPC)

Is your organization’s position on climate change consistent with theirs?

Consistent

Has your organization influenced, or is your organization attempting to influence their position?

We are not attempting to influence their position.

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)

PCPC and its member companies are aligned in their understanding of the immediate and potential long-term impacts of climate change and its effect on our planet, the natural environment and well-being of society. Members are committed to reducing their energy consumption, transitioning toward lower-carbon or renewable sources of energy, and ambitiously cutting their CO2 emissions while implementing mitigation, adaptation and resilience strategies.

PCPC aims to share best practices among its membership to help advance the management of carbon emissions across the sector.

Unilever welcomed the launch of PCPC’s sustainability initiative at the AGM in March 2020. Our EVP & COO NA for Beauty and Personal Care is Vice Chair of the PCPC.
Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
 Yes, we have evaluated, and it is aligned

Trade association
 Other, please specify
 Sustainable Food Policy Alliance (SFPA)

Is your organization’s position on climate change consistent with theirs?
 Consistent

Has your organization influenced, or is your organization attempting to influence their position?
 We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
 The Sustainable Food Policy Alliance seeks to accelerate the pace of change in the food industry through individual company leadership and collective support for public policies that raise the bar and inspire further action. In 2019, SFPA released a set of climate policy principles and urged the U.S. government to adopt policies that will significantly reduce GHG emissions across the economy, which include:

 - Establishing an ambitious carbon pricing system that sends a clear signal to the marketplace to reduce economy-wide GHG emissions aligned with the Paris Agreement goal to keep global temperature increase well below 2°C;
 - Accelerating new and existing policies to reduce carbon pollution and promote innovation at the federal and state levels to develop more sustainable energy sources.

 Unilever is a founding member of SFPA and we have been inputting directly into the Climate Principles, along with advocating for policy related to our principles at the federal and state level.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding
Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
 Yes, we have evaluated, and it is aligned

Trade association
 Other, please specify
 Corporate Leaders Group (UK & EU)

Is your organization’s position on climate change consistent with theirs?
 Consistent

Has your organization influenced, or is your organization attempting to influence their position?
 We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)

The University of Cambridge Institute for Sustainability Leadership (CISL) Corporate Leaders Groups (UK and EU) bring together business leaders committed to supporting the transformation to competitive, sustainable, inclusive economies that will deliver net-zero carbon emissions by 2050. Through exchange of evidence-based ideas and influential discussions with policymakers and peers, the Corporate Leaders Groups advocate for robust business and policy solutions to the environmental and sustainability challenges facing our planet.

The Corporate Leaders Groups’ members seek to share experiences with policymakers and business to promote ambitious and practical outcomes which:

- help achieve the goal of net zero emissions in the UK and Europe by 2050 at the latest
- ensure cumulative global carbon emissions do not exceed one trillion tonnes
- limit global temperature rise to well below 2°C, aiming for 1.5°C
- build an economy that supports and enables the UN Sustainable Development Goals.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization's engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

Trade association
Other, please specify
World Federation of Advertisers

Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
WFA is the only global organisation representing the common interests of marketers. It is the voice of marketers worldwide, representing 90% of global marketing communications spend – roughly US$900 billion per annum. WFA champions more effective and sustainable marketing communications.

Unilever has strongly supported the development of the WFA Planet Pledge, a CMO-led framework designed to galvanise action from marketers to promote and reinforce attitudes and behaviours which will help the world meet the challenges laid out in the UN SDGs.

Planet Pledge signatories make a commitment to joining and championing the UN Race to Zero campaign; to scaling their capability amongst their marketing, media and advertising teams to enable them to better understand the issues; to harnessing the power of their communications to champion and promote sustainable attitudes and behaviours; and to creating trust by ensuring that all marketing sustainability communications are legal, decent, honest and truthful

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned
Trade association
Other, please specify
Corporate Leaders Group (UK & EU)

Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
The University of Cambridge Institute for Sustainability Leadership (CISL) Corporate Leaders Groups (UK and EU) bring together business leaders committed to supporting the transformation to competitive, sustainable, inclusive economies that will deliver net-zero carbon emissions by 2050. Through exchange of evidence-based ideas and influential discussions with policymakers and peers, the Corporate Leaders Groups advocate for robust business and policy solutions to the environmental and sustainability challenges facing our planet.

The Corporate Leaders Groups’ members seek to share experiences with policymakers and business to promote ambitious and practical outcomes which:

- help achieve the goal of net zero emissions in the UK and Europe by 2050 at the latest
- ensure cumulative global carbon emissions do not exceed one trillion tonnes
- limit global temperature rise to well below 2°C, aiming for 1.5°C
- build an economy that supports and enables the UN Sustainable Development Goals.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

Trade association
Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
WFA is the only global organisation representing the common interests of marketers. It is the voice of marketers worldwide, representing 90% of global marketing communications spend – roughly US$900 billion per annum. WFA champions more effective and sustainable marketing communications.

Unilever has strongly supported the development of the WFA Planet Pledge, a CMO-led framework designed to galvanise action from marketers to promote and reinforce attitudes and behaviours which will help the world meet the challenges laid out in the UN SDGs.

Planet Pledge signatories make a commitment to joining and championing the UN Race to Zero campaign; to scaling their capability amongst their marketing, media and advertising teams to enable them to better understand the issues; to harnessing the power of their communications to champion and promote sustainable attitudes and behaviours; and to creating trust by ensuring that all marketing sustainability communications are legal, decent, honest and truthful.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding

Have you evaluated whether your organization's engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

C12.4

(C12.4) Have you published information about your organization's response to climate change and GHG emissions performance for this reporting year in places other than in your CDP response? If so, please attach the publication(s).
Publication
In mainstream reports, incorporating the TCFD recommendations

Status
Complete

Attach the document
- unilever-climate-transition-action-plan.pdf

Page/Section reference
Climate transition action plan - please see full report for full details.

Annual Report :
- Planet and society pages 28 - 31
- Non financial performance against our Compass targets - p34
- Climate change strategy, emissions data and energy use - P51 - 56, 64
- TCFD & Climate Change Pages p57 - 62

Content elements
Governance
Strategy
Risks & opportunities
Emissions figures
Emission targets
Other metrics
Other, please specify
Climate Transition Action Plan

Comment
C13. Other land management impacts

C-AC13.1/C-FB13.1/C-PF13.1

(C-AC13.1/C-FB13.1/C-PF13.1) Do you know if any of the management practices implemented on your own land disclosed in C-AC4.4a/C-FB4.4a/C-PF4.4a have other impacts besides climate change mitigation/adaptation?

Yes
(C-AC13.1a/C-FB13.1a/C-PF13.1a) Provide details on those management practices that have other impacts besides climate change mitigation/adaptation and on your management response.

Management practice reference number
MP8

Overall effect
Positive

Which of the following has been impacted?
Soil
Water
Yield
Other, please specify
Financial

Description of impact
Fertiliser management: optimising fertiliser application saves money for the farmer (economic sustainability) and prevents damaging nutrient loss to watercourses.

Have you implemented any response(s) to these impacts?
Yes

Description of the response(s)
A detailed fertilizer guide is developed and implemented each year.

Management practice reference number
MP10

Overall effect
Positive

Which of the following has been impacted?
Yield

Description of impact
Integrated pest management: Minimises risk to health of workers and bystanders (social sustainability) and can lead to better pest control overall, through prevention of damage

Have you implemented any response(s) to these impacts?
Yes

Description of the response(s)
Monitoring for signs of pest and disease in plantations is undertaken. Biological control methods are used.

Management practice reference number
MP11

Overall effect
Positive

Which of the following has been impacted?
Other, please specify
Other: Improved livelihoods

Description of impact
Knowledge sharing: This has improved farming skills and business knowledge of farmers.

Have you implemented any response(s) to these impacts?
Yes

Description of the response(s)
The implementation of farmer field schools and training is conducted.

Management practice reference number
MP15

Overall effect
Positive

Which of the following has been impacted?
Yield

Description of impact
Practices to increase wood production and forest productivity: Greater yield of biomass and calorific value, and higher income for farmers.

Have you implemented any response(s) to these impacts?
Yes

Description of the response(s)
Improved forestry and wood handling procedures and programs.

Management practice reference number
MP19

Overall effect
Positive

Which of the following has been impacted?
- Biodiversity
- Yield

Description of impact
Reforestation: The improvement of habitat has supported native wildlife, establishing a reservoir of natural enemies to crop pests, reducing pest or disease pressure. Furthermore, these areas have improved surface water infiltration within watersheds and thus have helped to regulate water flow.

Have you implemented any response(s) to these impacts?
Yes

Description of the response(s)
A reforestation programme is in place and participatory forest conservation and reforestation being done with partners - community, ISLA and IDH, KFS

C-AC13.2/C-FB13.2/C-PF13.2

(C-AC13.2/C-FB13.2/C-PF13.2) Do you know if any of the management practices mentioned in C-AC12.2a/C-FB12.2a/C-PF12.2a that were implemented by your suppliers have other impacts besides climate change mitigation/adaptation?
Yes

C-AC13.2a/C-FB13.2a/C-PF13.2a

(C-AC13.2a/C-FB13.2a/C-PF13.2a) Provide details of those management practices implemented by your suppliers that have other impacts besides climate change mitigation/adaptation.

Management practice reference number
MP1

Overall effect
Positive

Which of the following has been impacted?
- Biodiversity

Description of impacts
Biodiversity considerations: Improves habitat conditions for species, many of which are beneficial to agriculture, through the control of pests and pollination.

Have any response to these impacts been implemented?
Yes
Description of the response(s)
A biodiversity action plan describes initiatives to deliver improvements to this dimension.

Management practice reference number
MP1

Overall effect
Positive

Which of the following has been impacted?
Biodiversity
Soil
Water

Description of impacts
Biodiversity – considerations & composting: Improves soil fertility and structure, allowing soil to better retain water and improving habitat for soil biota.

Have any response to these impacts been implemented?
Yes

Description of the response(s)
Soil management measures are typically captured in a management plan. This ensures a defined set of management interventions are undertaken.

Management practice reference number
MP3

Overall effect
Positive

Which of the following has been impacted?
Biodiversity
Soil
Water

Description of impacts
Contour farming: Improve soil stability on sloped terrain helping to retain topsoil from the impact of weather events

Have any response to these impacts been implemented?
Yes

Description of the response(s)
Soil management measures are typically captured in a management plan. This ensures a defined set of management interventions are undertaken.
Management practice reference number
MP2

Overall effect
Positive

Which of the following has been impacted?
Soil
Yield
Other, please specify
Pests

Description of impacts
Crop Diversity & crop rotation: Crop rotation is beneficial to soil, as it prevents the build-up of pests and allows nitrogen fixing crops to ‘pass on’ nutrients to the next crop. This improvement in soil health can lead to better yields. Moreover, rotations can prevent the risk of pest infestations.

Have any response to these impacts been implemented?
Yes

Description of the response(s)
A farm management plan typically includes records of crop rotation for planning purposes.

Management practice reference number
MP8

Overall effect
Positive

Which of the following has been impacted?
Yield

Description of impacts
Fertiliser Management: Optimising fertiliser application saves money for the farmer (economic sustainability) and prevents damaging nutrient loss to watercourses.

Have any response to these impacts been implemented?
Yes

Description of the response(s)
A nutrient management plan is kept by farmers to document crop needs, capture results from soil or tissue nutrient testing and application rates.
Management practice reference number
MP10

Overall effect
Positive

Which of the following has been impacted?
Yield

Description of impacts
Integrated Pest Management: Minimises risk to health of workers and bystanders (social sustainability) and can lead to better pest control overall, through prevention of damage to beneficial insects. Yields of crops may also be increased by reducing harmful exposure to pollinators.

Have any response to these impacts been implemented?
Yes

Description of the response(s)
An integrated pest management plan captures management measures like recommended thresholds or triggers to spray pesticides by.

Management practice reference number
MP7

Overall effect
Positive

Which of the following has been impacted?
Biodiversity
Soil
Water

Description of impacts
Enhanced forest regeneration practices & land use change: By preventing land use change of important ecological areas like forest, grassland or wetlands, their soil, biodiversity and water features will be preserved.

Have any response to these impacts been implemented?
Yes

Description of the response(s)
A biodiversity action plan should identify areas of ecological importance that should not be converted to agriculture.

Management practice reference number
MP8
Overall effect
Positive

Which of the following has been impacted?
 Biodiversity
 Soil
 Water

Description of impacts
 Fertiliser application: The appropriate timing of activity, accounting for weather conditions, avoids wastage of inputs and damage to biological features of agricultural land (e.g. pollution of rivers from fertiliser application).

Have any response to these impacts been implemented?
 Yes

Description of the response(s)
 Management plans that apply to irrigation, pesticide and fertiliser use, should consider weather events).

C15. Biodiversity

C15.1

(C15.1) Is there board-level oversight and/or executive management-level responsibility for biodiversity-related issues within your organization?

<table>
<thead>
<tr>
<th>Board-level oversight and/or executive management-level responsibility for biodiversity-related issues</th>
<th>Description of oversight and objectives relating to biodiversity</th>
</tr>
</thead>
</table>
| Yes, both board-level oversight and executive management-level responsibility | The Board's Corporate Responsibility Committee oversees Unilever’s conduct as a responsible global business. It's comprised of three non-executive directors and core to its remit is its governance of progress on Unilever’s sustainability agenda, the Unilever Compass. Within the Unilever Compass is our biodiversity commitment to ‘Help protect and regenerate 1.5 million hectares of land, forests and oceans by 2030’.

C15.2

(C15.2) Has your organization made a public commitment and/or endorsed any initiatives related to biodiversity?
<table>
<thead>
<tr>
<th>Indicate whether your organization made a public commitment or endorsed any initiatives related to biodiversity</th>
<th>Biodiversity-related public commitments</th>
<th>Initiatives endorsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes, we have made public commitments and publicly endorsed initiatives related to biodiversity</td>
<td>Other, please specify Help protect 1.5m ha of land, forests, and oceans: Activities supported by programmes to conserve areas of land, forest, or ocean (measured by ocean floor area). Focus on areas defined in framework issued by Accountability Framework Initiative.</td>
</tr>
</tbody>
</table>

C15.3

(C15.3) Does your organization assess the impact of its value chain on biodiversity?

<table>
<thead>
<tr>
<th>Does your organization assess the impact of its value chain on biodiversity?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
</tbody>
</table>

C15.4

(C15.4) What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?

<table>
<thead>
<tr>
<th>Have you taken any actions in the reporting period to progress your biodiversity-related commitments?</th>
<th>Type of action taken to progress biodiversity-related commitments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes, we are taking actions to progress our biodiversity-related commitments</td>
</tr>
</tbody>
</table>

C15.5

(C15.5) Does your organization use biodiversity indicators to monitor performance across its activities?

<table>
<thead>
<tr>
<th>Does your organization use indicators to monitor biodiversity performance?</th>
<th>Indicators used to monitor biodiversity performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes, we use indicators</td>
</tr>
</tbody>
</table>

C15.6

(C15.6) Have you published information about your organization's response to biodiversity-related issues for this reporting year in places other than in your CDP response? If so, please attach the publication(s).
C16. Signoff

C-FI

(C-FI) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

C16.1

(C16.1) Provide details for the person that has signed off (approved) your CDP climate change response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Supply Chain Officer</td>
<td>Other C-Suite Officer</td>
</tr>
</tbody>
</table>

SC. Supply chain module

SC0.0

(SC0.0) If you would like to do so, please provide a separate introduction to this module.

We would like to thank our customers for participating in the CDP Supply Chain programme.

We have recently set out our net zero commitment and we’re currently looking at how to
measure progress towards this commitment and to allocate emissions to all our products. We’re not yet in a position to allocate emissions to specific customers, but hope to be able to do so in the future. See SC1.3 for further details.

SC0.1

(SC0.1) What is your company’s annual revenue for the stated reporting period?

<table>
<thead>
<tr>
<th>Annual Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
</tr>
<tr>
<td>52,444,000,000</td>
</tr>
</tbody>
</table>

SC1.1

(SC1.1) Allocate your emissions to your customers listed below according to the goods or services you have sold them in this reporting period.

- Requesting member
- Scope of emissions
- Allocation level
- Allocation level detail
- Emissions in metric tonnes of CO2e
- Uncertainty (±%)
- Major sources of emissions
- Verified
- Allocation method
- Market value or quantity of goods/services supplied to the requesting member
- Unit for market value or quantity of goods/services supplied
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

SC1.2

(SC1.2) Where published information has been used in completing SC1.1, please provide a reference(s).

Not applicable

SC1.3

(SC1.3) What are the challenges in allocating emissions to different customers, and what would help you to overcome these challenges?

<table>
<thead>
<tr>
<th>Allocation challenges</th>
<th>Please explain what would help you overcome these challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer base is too large and diverse to accurately track emissions to the customer level</td>
<td>Our Climate Transition Action Plan gives direction on the actions we will take to reduce emissions to zero within our own operations by 2030 and to net zero across our value chain by 2039. We’re convinced that early action to drive aggressive reductions in emissions will make us a more competitive business in the future. Working closely with our customers will be critical if we are to achieve our commitments. Unilever has been measuring Scope 1 and 2 emissions from all our manufacturing sites worldwide for many years. Since 2010, we have also been estimating the emissions of our products across the lifecycle, including consumer use. We are currently looking at how to measure progress towards our net zero commitment and to allocate emissions to all our products. Until we have found a measurement solution, we are unable to allocate emissions to different customers for a number of reasons: 1. The lack of specificity of data – manufacturing data is reported at site level and many of our sites manufacture a range of products across Food & Refreshments, Home Care and Beauty & Personal Care. We do not breakdown emissions within a site so we cannot allocate accurately to customers. 2. Scope 3 data is sufficiently specific as we collect emissions by stock keeping unit (SKU). However, it would be highly resource intensive and inefficient at present to link the emissions of each SKU to our sales by customer because our data systems are not designed this way and so the procedure would need to be manual.</td>
</tr>
</tbody>
</table>

SC1.4

(SC1.4) Do you plan to develop your capabilities to allocate emissions to your customers in the future?

Yes
SC1.4a

(SC1.4a) Describe how you plan to develop your capabilities.

We are currently looking at how to measure progress towards our net zero commitment and to allocate emissions to all our products and their sales. We welcome engagement with all our value chain partners to help achieve this goal.

SC2.1

(SC2.1) Please propose any mutually beneficial climate-related projects you could collaborate on with specific CDP Supply Chain members.

SC2.2

(SC2.2) Have requests or initiatives by CDP Supply Chain members prompted your organization to take organizational-level emissions reduction initiatives?

No

SC4.1

(SC4.1) Are you providing product level data for your organization’s goods or services?

No, I am not providing data

Submit your response

In which language are you submitting your response?

English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th></th>
<th>I understand that my response will be shared with all requesting stakeholders</th>
<th>Response permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please select your submission options</td>
<td>Yes</td>
<td>Public</td>
</tr>
</tbody>
</table>

Please confirm below

I have read and accept the applicable Terms